期刊文献+

基于最小二乘算法和SVDUKF算法的电液伺服加载优化 被引量:3

Optimization of the electro-hydraulic servo loading based on least square and SVDUKF algorithms
下载PDF
导出
摘要 为了分析和模拟伺服刀架可靠性试验台电液伺服加载系统的动态性能,建立了该加载系统的动态特性数学模型,并利用最小二乘算法对其参数进行估计。为了减弱噪声对加载系统稳定性的影响和避免无色卡尔曼滤波算法(UKF)中协方差矩阵出现病态导致算法失效,提出了利用基于奇异分解的无色卡尔曼滤波算法(SVDUKF算法)对电液伺服加载系统反馈力信号进行滤波的方法,并进行了SVDUKF算法与扩展卡尔曼滤波算法(EKF)算法之间滤波性能对比。实验结果表明,最小二乘算法估计出的数学模型具有较高精度,并且SVDUKF算法具有高效的滤波能力和提高系统稳定性的能力。 In order to analyze and simulate the dynamic characteristics of the electro-hydraulic servo loading system of the servo turret reliability test bench, a dynamic characteristics model of the electro- hydraulic servo loading system was established. The parameters of the dynamic model were estimated by the least square algorithm. For avoiding the system from the noise and preventing the Unscented Kalman Filter (UKF) algorithm from the ill-conditioned covariance matrix, a SVDUKF algorithm was proposed to smooth the force feedback signal of the hydraulic servo loading system. The filtering performances of the SVDUKF algorithm and the EKF algorithm were compared by experiments. The results show that the dynamic model with parameters estimated by the least squares algorithm has high precision~ and the filtering performance of the SVDUKF algorithm has high-efficiency, which can improve the stability of the system.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第2期392-397,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家科技重大专项项目(2010ZX04014-016)
关键词 机床技术 稳定性 最小二乘算法 奇异分解的无色卡尔曼滤波算法 machine tool technology stability least squares algorithm SVDUKF algorithm
  • 相关文献

参考文献12

  • 1李福义编..液压技术与液压伺服系统[M].哈尔滨:哈尔滨船舶工程学院出版社,1992:325.
  • 2Lee J H, Ricker N L. Extended Kalman filter based nonlinear model predictive control[J]. Industrial & Engineering Chemistry Research, 1994, 33 ( 6 ) : 1530-1541. 被引量:1
  • 3Wan E A, van Der Merwe R. The unscented Kal- man filter for nonlinear estimation[C] // In Proceed- ings of IEEE Symposium 2000 (AS-SPCC), Lake, Louise, Alta, 2000. 被引量:1
  • 4Deticek E, Kiker E. An adaptive for force control of hydraulic drives of facility for testing mechanical co- nstructions[J]. Experimental Techniques, 2001, 25 (1) : 35-39. 被引量:1
  • 5韩贺永,黄庆学,张洪,王建梅,李玉贵.液压矫直机液压伺服系统动态特性分析比较[J].吉林大学学报(工学版),2012,42(2):372-376. 被引量:8
  • 6吴广玉等编著..系统辨识与自适应控制 下[M].哈尔滨:哈尔滨工业大学出版社,1987:199.
  • 7Ding F, Shi Y, Chen T. Auxiliary model-based least-squares identification methods for Hammer- stein output-error systems[J]. Systems & Control Letters, 2007, 56(5).. 373-380. 被引量:1
  • 8Zhang X, Hu W, Zhao Z, et al. SVD based Kalman particle filter for robust visual tracking[C]//19th International Conference on Pattern Recognition, Tampa, Florida, United States, 2008. 被引量:1
  • 9曲从善,许化龙,谭营.一种基于奇异值分解的非线性滤波新算法[J].系统仿真学报,2009,21(9):2650-2653. 被引量:9
  • 10Zhang Fei, Liu Guang-jun, Fang Li-jin. Battery state estimation using unsented Kalman filter[C]// IEEE International Conference on Robotics and Au- tomation, Kobe, Japan, 2009. 被引量:1

二级参考文献35

共引文献16

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部