期刊文献+

基于神经网络的柴油机轨压模型补偿容错控制研究 被引量:2

Research on Fault-tolerant Control of Diesel Common Rail Pressure Based on Neural Network
下载PDF
导出
摘要 电控柴油机高压共轨燃油喷射系统具有很强的非线性、时变性和扰动性,传统的控制方式难以精确控制系统的轨压。基于BP神经网络辨识得到了非线性柴油机燃油喷射系统模型,提出了一种模型补偿容错控制方法。该方法在PID参数模糊自整定控制的基础上,通过加入一个基于梯度下降算法的误差补偿控制器修正输出偏差,实现了对柴油机燃油喷射系统时变性和扰动性的控制。仿真结果证明了该方法的有效性,与传统PID控制和模糊PID控制相比具有更好的鲁棒性和抗扰动性。 It's difficult to realize accurate control of high-pressure common rail fuel injection system of electronically controlled diesel engine with traditional control methods because it was nonlinear, time-variable and disturbed. A fault-tolerant control method was proposed based on BP neural network and fuzzy theory. The nonlinear diesel fuel injection system model could be established through BP neural network. Based on the fuzzy identification of PID parameters, the time-variability and disturbance was controlled by correcting output deviation with fault-tolerant controller which was based on the gradient descent method. Finally, it was proved that the method was valid by the simulation. Compared with traditional and fuzzy PID control, the fault-tolerant control had better robustness and anti-disturbance.
出处 《车用发动机》 北大核心 2009年第2期16-20,23,共6页 Vehicle Engine
关键词 柴油机 压力控制 数学模型 容错控制 神经网络 PID控制 模糊控制 diesel engine pressure control mathematical model fault-tolerant control neural network PID control fuzzy control
  • 相关文献

参考文献14

二级参考文献34

共引文献259

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部