期刊文献+

一种新的有监督保局投影人脸识别算法 被引量:12

New supervised locality-preserving projections algorithm for face recognition
下载PDF
导出
摘要 为了充分利用样本的类别信息,提出了一种新的有监督保局投影人脸识别算法(NSLPP)。首先,把类间散布矩阵融入到传统保局投影算法的目标函数中,修改目标函数,并基于新的目标函数得到变换矩阵;然后用线性鉴别的思想筛选出变换矩阵中的最优基向量,构成最终的变换矩阵,把训练样本和测试样本投影到有最优基向量构成的子空间得到训练样本和测试样本的特征;最后采用最近邻分类器分类,在ORL和FERET人脸库上的测试结果表明,NSLPP算法具有较好的识别性能。 In order to make full use of the classification information of samples to get optimal features, a new Supervised Locality Preserving Projections (NSLPP) algorithm for face recognition was proposed. Between-class scatter matrix was embedded in the objective function of original locality preserving projections, and the transformation matrix could be obtained based on the modified objective function. Subsequently, according to the idea of linear diseriminant, the optimal base vectors of the transformation matrix were selected to form the final transformation matrix. As a result, the features of training samples and testing samples were got by projecting them on the subspace spanned by optimal base vectors. Finally, Nearest Neighborhood (NN) algorithm was used to construct classifiers. Experiments on ORL and FERET face database show that the recognition performance of NSLPP is effective.
出处 《计算机应用》 CSCD 北大核心 2009年第5期1416-1418,1422,共4页 journal of Computer Applications
关键词 人脸识别 有监督保局投影 线性鉴别 有监督学习 face recognition supervised locality-preserving projections linear discrimination supervised learning
  • 相关文献

参考文献14

  • 1ZHAO W, CHELLAPPA R, PHILLIPS P J, et al. Face recognition: A literature survey[ J]. ACM Computing Surveys, 2003, 35 (4) : 399 -458. 被引量:1
  • 2庞春江,高婉青.基于模糊混沌神经网络的人脸识别算法[J].计算机应用,2008,28(6):1549-1551. 被引量:7
  • 3徐倩,邓伟.基于局部特征的自适应加权2DPCA的人脸识别[J].计算机应用,2008,28(5):1267-1268. 被引量:2
  • 4TURK M, PENTLAND A. Eigenfaces for recognition [ J]. Journal of Cognitive Neuroscience, 1991,3(1) : 71 -86. 被引量:1
  • 5BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711 -720. 被引量:1
  • 6HE XIAO - FEI, YAN SHUI - CHENG, HU YU - XIAO, et al. Face recognition using laplacianfaces[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 328 - 340. 被引量:1
  • 7ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [ J]. Science, 2000, 290(5500) : 2323 - 2326. 被引量:1
  • 8ZHAO HAI-TAO, SUN SHAO-YUAN, JING ZHONG-LIANG, et al. Local structure based supervised feature extraction[ J]. Pattern Recognition, 2006, 39(8) : 1546 - 1550. 被引量:1
  • 9DENG CAI, XIAOFEI HE, JIAWEI HAN, et al. Orthogonal laplacianfaces for face recognition[ J]. IEEE Transactions on Image Processing, 2006, 15(11) : 3608 - 3614. 被引量:1
  • 10ZHU LEI, ZHU SHAN-AN. Face recognition based on orthogonal discriminant locality preserving projections [ J]. Neurocomputing,2007,70:1543 -1546. 被引量:1

二级参考文献48

共引文献46

同被引文献90

引证文献12

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部