期刊文献+

改进的模糊神经网络算法在车型识别中的应用

Improved Application of Fuzzy Neural Network in Vehicle Model Recognition
原文传递
导出
摘要 FBP和FCNN网络是模式识别中应用最为广泛的两种神经网络,本文将这两种网络应用于车型识别,分别建立了车型识别模型。利用混沌对初值的极端敏感依赖提出了FCNN网络算法,通过对车型图像数据库进行仿真实验,对比分析它们各自的识别率和泛化能力等性能指标,证明了FCNN网络算法的有效性。 FBP and FCNN neural networks are widely applied in pattern recognition. These two methods are used for vehicle model recogni- tion, and their face recognition models are established respectively. Basd on analyzing the theory of fuzzy neural network recognition, simulation experiments are carried out using vehicle model recognition database. The characteristics of two neural networks, such as recognition rate and generalization ability are discussed, which should be considered in the practical applications of these two types of neural networks. Finally we prove FCNN neural networks are effective.
出处 《世界科技研究与发展》 CSCD 2009年第5期814-816,857,共4页 World Sci-Tech R&D
关键词 FBP神经网络 FCNN神经网络 车型识别 FBP neural networks FCNN neural networks vehicle model recognition
  • 相关文献

参考文献8

二级参考文献28

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部