摘要
Resistance spot welding( RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on the quality of the nugget. To predict the microstracture evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in ierms of the phase transformation in spot welding of 6082 aluminum alloy.
Resistance spot welding( RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on the quality of the nugget. To predict the microstracture evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in ierms of the phase transformation in spot welding of 6082 aluminum alloy.
基金
This research was supported by National Natural Science Foundation of China ( No. 50575159 ) and project of Chinese Ministry of Education( No. 106049, 20060056058), Natural Science Foundation of Tianjin (06YFJMJC03400).