摘要
The applicatio, n of aluminum alloy in the automotive and aviation fields is impeded by the wear and life of electrode for resistance spot welding (RSW). The alloying interaction between the copper electrode and aluminum alloy sheet is the main reason of making electrode life decrease. The test of alloying interaction is difficult because of the transient in RSW of aluminum alloy. In this paper, the process of alloying between copper and aluminum on the electrode tip is simulated with Gleeble-1500 thermal simulation testing machine. The microstructure and composition of the sample of physical simulation for the alloying interaction between the copper electrode and aluminum alloy are analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. The results indicate that the alloying reaction between copper and aluminum under the different temperature, pressure and time is mainly the eutectic reaction. The reaction result is the eutectic of ( Al + CuAl2 ) , and then Cu9Al4 forms through solid diffusion between the CuAl2 phase and the copper base metal.
The applicatio, n of aluminum alloy in the automotive and aviation fields is impeded by the wear and life of electrode for resistance spot welding (RSW). The alloying interaction between the copper electrode and aluminum alloy sheet is the main reason of making electrode life decrease. The test of alloying interaction is difficult because of the transient in RSW of aluminum alloy. In this paper, the process of alloying between copper and aluminum on the electrode tip is simulated with Gleeble-1500 thermal simulation testing machine. The microstructure and composition of the sample of physical simulation for the alloying interaction between the copper electrode and aluminum alloy are analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. The results indicate that the alloying reaction between copper and aluminum under the different temperature, pressure and time is mainly the eutectic reaction. The reaction result is the eutectic of ( Al + CuAl2 ) , and then Cu9Al4 forms through solid diffusion between the CuAl2 phase and the copper base metal.
基金
This project was supported by Provincial Natural Science Foundation of Shanxi (No. 2009011028-2) , Provincial Outstanding Graduate Innovation Projection of Shanxi (No. 20103093 ) and Star Special Projection of Taiyuan (No. 09121013).