期刊文献+

基于Kalman预测及逆投影的车道识别技术 被引量:6

Lane recognition technique of prediction and inverse projection based on Kalman
下载PDF
导出
摘要 针对结构化道路的特点,提出一种实用的基于组合模型的车道线自动识别方法。近视场区域采用Hough变换初始检测车道线,远视场区域采用三次曲线模型拟合车道线。车道跟踪用Kalman预测参数动态建立ROI(region of interest),用扫描线法搜索车道线边界点,在车道线间断处用Kalman预测器定位车道线边界,还设计了一个失效判别模块来验证跟踪结果。最后将投影图中检测到的车道线进行逆投影重建,得到实际路面的车道线。实验结果表明,对于不同的车道线种类和在部分车道线被前方车辆遮挡的条件下,该算法均具有较高的实时性和鲁棒性。 A practical method of lane recognition for structural road is proposed based on combined model. Lane is initially detected by Hough transform in near area and curve fitting in far area. In lane tracking, the region of interest (ROI) is established with parameters predicted through the Kalman predictor, the lane boundary points are searched by scanning line method in ROI, and the lane boundary in discontinuous area is located by Kalman predictor. A discrimination module responsible for estimating tracking results is introduced. Finally, a real lane is obtained using inverse projective reconstruction of the lane on the image. For various kinds of lanes and most lanes covered with vehicles ahead, experiment results show that the algorithm has good robustness and efficiency.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第6期1548-1551,1554,共5页 Computer Engineering and Design
基金 北京市教委和北京市基金委重点共同资助基金项目(KZ20041000501)
关键词 车道线识别 KALMAN预测 逆投影 HOUGH变换 ROI lane recognition Kalman prediction inverse projection Hough transformation ROI
  • 相关文献

参考文献12

  • 1Furukawa Y.Status and future direction of intelligent drive assist technology[C].Dearbom(Ml),USA:Proc of the 2000 IEEE Intelligent Transportation Systems,2000:113-118. 被引量:1
  • 2Lai A H S,Yung N H C.Lane detection by orientation and length discrimination[J].IEEE Trans on Systems,Man and Cybemetics, 2000,30(4):539-548. 被引量:1
  • 3Wang C-C, Thorpe C. Simultaneous localization and mapping with detection and tracking of moving objects[J].International Journal of Robotics Research,2007,26(9):889-916. 被引量:1
  • 4Jia Z,Balasuriya A,Challa S.Recent developments in vision based target tracking for autonomous vehicles navigation[C]. Toronto, Canada: Proc of the 2006 IEEE Intelligent Transportation Systems Conference,2006:765-770. 被引量:1
  • 5Takahashi A,Ninomiya Y, Ohta M,et al.Rear view lane detection by wide angle camera[C].Proc of the 2002 IEEE Intelligent Vehicle Symposium,2002:148-153. 被引量:1
  • 6Li Q,Zheng N,Cheng H.Springrobot:a prototype autonomous vehicle and its algorithms for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):300-308. 被引量:1
  • 7Bcher T, Curio C,Edelbrunner J,et al.Image processing and behavior planning for intelligent vehicles[J].IEEE Transactions on Industrial Electronics,2003,50(1):62-75. 被引量:1
  • 8Wang Y, Teoh E K, Shen D G.Lane detection and tracking using B-Snake[J].Image and Vision Computing,2004,22(4):269-280. 被引量:1
  • 9Broggi A,Bertozzi M,Fascioli A.Architectural issues on vision- based automated vehicle guidance:The experience of the ARGO vehicle[J].Real-Time Imaging,2000,6(4):313-324. 被引量:1
  • 10Koglerl J,Hemetsbergerl H,Alefs B,et al.Embedded stereo vision system for intelligent autonomous vehicles [C]. Tokyo, Japan: Proc of the 2006 IEEE Intelligent Vehicle Symposiums,2006: 64-69. 被引量:1

同被引文献50

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部