期刊文献+

智能车前方目标车辆检测方法研究 被引量:1

Research on preceding vehicle detection for intelligent vehicle
下载PDF
导出
摘要 为了准确检测智能车前方目标车辆以及确定目标车辆与本车的距离信息,提出了一种应用模糊逻辑融合车辆多特征检测目标车辆的算法。该算法充分考虑到车辆多个特征的重要性,将模糊理论中的模糊隶属度函数和特征置信度值相结合实现目标车辆的验证。在生成目标假设以及提取有效特征点后,通过对不同特征进行模糊化,根据模糊推理融合得到的目标车辆的最终置信度验证车辆假设,实现前方车辆的检测。试验数据表明,该算法具有较好的适应能力和抗干扰能力,能够及时准确地检测前方目标车辆。 In order to implement the front vehicle detection and determine the distances between the host vehicle and the target vehicles accurately,one kind of algorithm for vehicle detection using fuzzy logic is proposed.Considering the importance of the features,the membership function and confidence are combined to verify the hypothesis.After vehicle hypothesis formation,features are fuzzed with membership functions and the vehicle detection is realized according to the confidence obtained by fusion of different features.The experiments indicated that this algorithm has the good adaptive ability and anti-jamming ability.It can detect the proceeding vehicles intimely and accurately.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第23期5100-5103,共4页 Computer Engineering and Design
基金 北京市教委科技创新平台基金项目(JJ002790200802)
关键词 智能车 模糊逻辑 隶属度函数 特征置信度 车辆检测 intelligent vehicle fuzzy logic membership function confidence of feature vehicle detection
  • 相关文献

参考文献10

  • 1Nicolas Blanc,Bruno Steux,Ecole des Mines de Paris,et al.LaR-ASideCam:a fast and robust vision-based blind-spot detection system[C].Istanbul,Turkey:Proceedings of the IEEE Intelligent Vehicles Symposium,2007:480-485. 被引量:1
  • 2Sun Zehang,Bebis G,Miller R.On-road vehicle detection using evolutionary Gabor filter optimization[C].IEEE Transactions on Intelligent Transportation Systems,2005,6(2):125-137. 被引量:1
  • 3杨建荣,曲仕茹.基于单目视觉的障碍物检测方法研究[J].计算机仿真,2009,26(2):278-281. 被引量:10
  • 4Fan Xinnan,Xu Lizhong,Zhang Xuewu,et al.Vehicle image edge detection using image fusion at pixel level[C].Proceedings of the IEEE International Conference on Automation and Logistics,2008:1713-1716. 被引量:1
  • 5Chart Yi-Ming,Huang Shih-Shinh,Fu Li-Chen,et al.Vehicle detection under various lighting conditions by incorporating particle filter[C].Seattle:10th International IEEE Conference on Intelligent Transportation Systems,2007:534-539. 被引量:1
  • 6Baehring D,Simon S,Niehsen W,et al.Detection of close cut-in and overtaking vehicles for driver assistance based on planar parallax[C].Proceedings of IEEE Intelligent Vehicles Symposium.Las Vegas:IEEE Press,2005:290-295. 被引量:1
  • 7Zhu Ying,Comaniciu Dorin,Pellkofer Martin,et al.Passing vehicle detection from dynamic background using robust information fusion[C].Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems.Washington:IEEE Press,2004:564-569. 被引量:1
  • 8朱云芳,王贻术,杜歆.静态环境中基于光流的障碍物检测[J].浙江大学学报(工学版),2008,42(6):923-926. 被引量:7
  • 9邓自立著..最优估计理论及其应用 建模、滤波、信息融合估计[M].哈尔滨:哈尔滨工业大学出版社,2005:490.
  • 10郑榜贵,田炳香,段建民.基于Kalman预测及逆投影的车道识别技术[J].计算机工程与设计,2009,30(6):1548-1551. 被引量:6

二级参考文献34

  • 1胡海峰,史忠科,徐德文.智能汽车发展研究[J].计算机应用研究,2004,21(6):20-23. 被引量:38
  • 2Furukawa Y.Status and future direction of intelligent drive assist technology[C].Dearbom(Ml),USA:Proc of the 2000 IEEE Intelligent Transportation Systems,2000:113-118. 被引量:1
  • 3Lai A H S,Yung N H C.Lane detection by orientation and length discrimination[J].IEEE Trans on Systems,Man and Cybemetics, 2000,30(4):539-548. 被引量:1
  • 4Wang C-C, Thorpe C. Simultaneous localization and mapping with detection and tracking of moving objects[J].International Journal of Robotics Research,2007,26(9):889-916. 被引量:1
  • 5Jia Z,Balasuriya A,Challa S.Recent developments in vision based target tracking for autonomous vehicles navigation[C]. Toronto, Canada: Proc of the 2006 IEEE Intelligent Transportation Systems Conference,2006:765-770. 被引量:1
  • 6Takahashi A,Ninomiya Y, Ohta M,et al.Rear view lane detection by wide angle camera[C].Proc of the 2002 IEEE Intelligent Vehicle Symposium,2002:148-153. 被引量:1
  • 7Li Q,Zheng N,Cheng H.Springrobot:a prototype autonomous vehicle and its algorithms for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):300-308. 被引量:1
  • 8Bcher T, Curio C,Edelbrunner J,et al.Image processing and behavior planning for intelligent vehicles[J].IEEE Transactions on Industrial Electronics,2003,50(1):62-75. 被引量:1
  • 9Wang Y, Teoh E K, Shen D G.Lane detection and tracking using B-Snake[J].Image and Vision Computing,2004,22(4):269-280. 被引量:1
  • 10Broggi A,Bertozzi M,Fascioli A.Architectural issues on vision- based automated vehicle guidance:The experience of the ARGO vehicle[J].Real-Time Imaging,2000,6(4):313-324. 被引量:1

共引文献20

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部