期刊文献+

基于BI-RADS的超声乳腺图像的计算机辅助诊断研究 被引量:1

Computer-aided Diagnosis of Breast Ultrasound Image Based on BI-RADS
下载PDF
导出
摘要 目的根据乳腺超声图像的分级标准(BI-RADS)为诊断的指导,初步完成了诊断系统的设计。在图像处理中引入LBM滤波,并用无初始化的C-V模型进行分割,从形态特征与纹理特征入手,提取图像中相应的特征参数。采用支持向量机方法对所提取的特征参数进行分类。通过对88幅乳腺超声图像(其中良性37例、恶性51例)进行训练和测试,得到的判别准确率、敏感性和特异性分别为91.4%、94.4%和86.4%。结果表明,依据BI-RADS的分级特征研究有利于计算机辅助诊断在临床中的应用。 Based on an standard classification ( BI - RADS) used in breast ultrasound image, we design this computer - aided system. The lattice Boltzmann models is used here as an effective method to de - noise the speckle, also an improved CV models is adopted here, shape and texture features is both considered in extracting feature parameters. In the end support vector machines is used for classification. Experiments on 88 cases ( including 37 benign tumors and 51 malignant ones) achieve the accuracy91.4% , sensitivity94.4% and specificity 86.4%. Therefore, the result proves that this method based on BI - RADS can be helpful for computer - aided diagnosis.
出处 《生物医学工程学进展》 CAS 2009年第1期9-13,共5页 Progress in Biomedical Engineering
基金 上海市教育委员会科研创新项目资助(09YZ15)
关键词 乳腺超声图像 计算机辅助诊断 BI—RADS LBM C—V模型 SVM Breast ultrasound image, Computer- aided diagnosis, BI- RADS, Lattice Boltzmann models, C - V models, Support vector machines
  • 相关文献

参考文献4

二级参考文献30

  • 1陈克敏,秦茜淼,茅蓉,陈为民,华秀云.超声检查在良恶性乳腺肿块评估中的作用[J].中华放射学杂志,1995,29(3):154-157. 被引量:14
  • 2谢逢,罗立民,田雪芹.基于知识的人脑三维医学图像分割显示方法[J].生物医学工程学杂志,1997,14(2):124-127. 被引量:11
  • 3STAVROS A T,THICKMAN D,RAPP C L,et al.Solid breast nodules:Use of sonography to distinguish between benign and malignant lesions[J].Radiology,1995,196:123-134. 被引量:1
  • 4HUBER S,DANES J,ZUNA I,et al.Relevance of sonographic B-mode criteria and computer-aided ultrasonic tissue characterization in differential/diagnosis of solid breast masses[J].Ultrasound in Med.&Biol,2000,26 (8):1243-1252. 被引量:1
  • 5CHOU Y H,TIU C M,HUNG G S,et al.Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis[J].Ultrasound in Med.&Biol,2001,27(11):1493-1498. 被引量:1
  • 6CHEN D R,CHANG R F,KUO W J,et al.Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks[J].Ultrasound in Med.&Biol,2002,28(10):1301-1310. 被引量:1
  • 7JOO S,YANG Y S,MOON W K,et al.Computer-aided diagnosis of solid breast nodules:use of an artificial neural network based on multiple sonographic features[J].Medical Imaging,2004,23(10):1292-1300. 被引量:1
  • 8BOUKERROUI D,BASSET O,GUERIN N,etal.Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation[J].European Journal of Ultrasound,1998,8(2):135-144. 被引量:1
  • 9MADABHUSHI A,METAXAS D N.Combining low-,high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions[J].Medical Imaging,2003,22(2):155-169. 被引量:1
  • 10HUANG Y L,CHEN D R.Watershed segmentation for breast tumor in 2-D sonography[J].Ultrasound in Med.& Biol,2004,30(5):625-632. 被引量:1

共引文献36

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部