期刊文献+

乳腺超声图像肿瘤全自动定位方法研究 被引量:2

Fully automatic tumor detection in breast ultrasound images
下载PDF
导出
摘要 乳腺超声图像肿瘤的定位是计算机辅助诊断(CAD)系统进行肿瘤分割和良恶性分类处理的前提,为此提出了一种全自动定位肿瘤位置的方法。该方法不依赖初始的固定参考位置和强制性后处理规则,能够较大限度地适应肿瘤在超声图像中相对位置的变化。与目前最好的几种自动定位方法相比,该方法具有更高的定位准确率。 Tumor detection in breast ultrasound images is a prerequisite for further segmentation and classification in computer-aided diagnosis (CAD) system. This paper presented a fully automated method for locating tumors. This method didn' t rely on fixed reference position and any initial hard rule and could adapt to the changing relative position of tumors in the ultrasound images to a large extent. This method had higher accuracy compared to several tumor detection methods.
出处 《计算机应用研究》 CSCD 北大核心 2011年第12期4752-4756,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60873142 30670546) 哈尔滨科技人才创新基金资助项目(2008RFQXS037 2009RFQXS032) 哈尔滨市科技局优秀学科带头人项目(2009RFXXS211)
关键词 乳腺超声图像 计算机辅助诊断系统 肿瘤定位 breast ultrasound image CAD tumor detection
  • 相关文献

参考文献16

  • 1CHENG Heng-da, SHAN Juan, JU Wen, et al. Automated breast cancer detection and classification using ultrasound images: a survey [J]. Pattern Recognition,2010,43( 1 ) :299-317. 被引量:1
  • 2JEMAL A, SIEGEL R, XU J, et al. Cancer statistics 2010[J]. CA Cancer J Clin,2010,60(5) :277-300. 被引量:1
  • 3KUSHI L H, BYERS T, DOYLE C, et al. American cancer society guidelines on nutrition and physical activity for cancer prevention: re- ducing the risk of cancer with healthy food choices and physical activ- ity[J]. CA Cancer J Clin,2006,56(5) :254-281. 被引量:1
  • 4CUMMINGS S R, TICE J A, BAUER S, et al. Prevention of breast cancer in postmenopausa! women: approaches to estimating and re- ducing risk[J], d Natl Cancer Inst,2009,101 (6) :384-398. 被引量:1
  • 5JESNECK J, LO J, BAKER J. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors [J]. Radiology,2007,244(2) :390-398. 被引量:1
  • 6CHEN D R, KUO W J, CHANG R F, et al. Use of the bootstrap technique with small training sets for computer-aided diagnosis in breast ultrasound [ J ]. Ultra Sound in Medicine and Biology, 2002,28(7) :897-902. 被引量:1
  • 7HUANG Y L, CHEN D R, LIU Y K. Breast cancer diagnose is using image retrieval for different ultrasonic systems [ C ]//Proc of Interna- tional Conference on Image Processing. 2004:2598-2960. 被引量:1
  • 8HWANG K H, LEE J G, KIM J H, et al. Computer aided diagnosis (CAD) of breast mass on ultra sonography and scintimammography [ C]//Proc of the 7th International Workshop on Enterprise Networ- king and Computing in Health Care Industry. 2005:187-189. 被引量:1
  • 9HUANG Y, WANG K, CHEN D. Diagnosis of breast tumors with ul- trasonic texture analysis using support vector machines [ J]. Neural Computing & Applications,2006,15(2 ) : 164-169. 被引量:1
  • 10GURNEY J W. Neural networks at the crossroads: caution ahead [J]. Radiology,1994,193( 1 ) :27-28. 被引量:1

同被引文献20

  • 1徐伟栋,王小英,夏顺仁,严勇.基于模型的乳腺X线图像胸肌分割算法研究[J].浙江大学学报(工学版),2005,39(3):427-432. 被引量:5
  • 2SIEGEL R,NAISHADHAM D,JEMAL A.Cancer statistics,2012[J].CA:a Cancer Journal for Clinicians,2012,62(1):10-29. 被引量:1
  • 3HIGGINS M J,BASELGA J.Targeted therapies in breast cancer[J].Journal of Clinical Investigation,2011,121(10):3797-3803. 被引量:1
  • 4KASS M,WITKIN A,TERZOPOULOS D.Snakes:active contour.models[J].International Journal of Computer Vision,1988,1(4):321-331. 被引量:1
  • 5MUMFORD D,SHAH J.Boundary detection by minimizing functio-nals[C]//Proc of IEEE Conference on Computer Vision Pattern Rec-ognition.1985. 被引量:1
  • 6MUMFORD DjSHAH J.Optimal approximations by piecewise smoothfunctions and associated variational problems[J].Communicationson Pureand Applied Mathematics,1989,42(5):577-685. 被引量:1
  • 7MALLADI R,SETHIAN J,VEMURI B.Shape modeling with frontpropagation:a level set approach[J].IEEE Trans on Pattern A-nalysis and Machine Intelligence,1995,17(2):158-175. 被引量:1
  • 8CHAN T,YESE L.Active contours without edges[J].IEEE Transon Image Processing,2001,10(2):266-277. 被引量:1
  • 9YESE L,CHAN T.A multiphase level set framework for image seg-mentation using the Mumford and Shah model[J].InternationalJournal Computer Vision,2002,50(3):217-293. 被引量:1
  • 10TSAI A,YEZZI A,WILLSKY A S.Curve evolution implementationof the Mumford-Shah 'functional for image segmentation,denoising,interpolation,and magnification[J].IEEE Trans on ImageProcess,2001,10(8):1169-1186. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部