期刊文献+

联合弹性特征的多特征乳腺肿瘤超声图像识别 被引量:1

Multi-characteristics recognition of breast tumor ultrasound images combining with elasticity parameters
下载PDF
导出
摘要 计算机辅助诊断技术是提高诊断效率的有效手段,目前常使用肿瘤的形态和灰度纹理特征进行综合分析。而临床研究表明,肿瘤弹性也是判别其良恶性的重要指标。本文使用非刚性配准的方法,分析加压前后两幅灰阶超声肿瘤图像之间的差异,从而提取了形变总量和缩小放大比这两个反映肿瘤弹性的特征参数。随后的分类判决实验证明,这两个弹性参数对肿瘤良恶性具有较好的区分能力,联合使用形态特征后性能更优。 Computer aided diagnosis (CAD) is an effective technique to improve the efficiency of diagnosis, and today it usually performs a synthetic analysis based on the morphology and grayscale texture characteristics. However, clinical research demonstrated that the tumor elasticity was also a very important indicator to judge its benignity or malignance. In the current paper, a non-rigid registration method is used to analyze the difference between two grayscale ultrasonic images of the tumor before and after compression. Then, two characteristic parameters named total deformation and shrink-magnify ratio are extracted, reflecting the tumor elasticity. The classification experiment showed that the elasticity parameters had a good capability in determining whether the tumor was benign or malignant, and the performance could be improved by combining with morphology characteristics.
出处 《北京生物医学工程》 2008年第6期565-568,共4页 Beijing Biomedical Engineering
基金 安徽省教委自然科学基金重点研究项目(2006KJ097A)资助
关键词 乳腺肿瘤 超声图像 计算机辅助诊断 弹性特征 Breast tumor ultrasound image computer aided diagnosis elasticity characteristics
  • 相关文献

参考文献9

  • 1哈章,李传富,王金萍,周康源,贺礼.基于改进C-V模型的乳腺肿瘤超声图像分割[J].中国医疗器械杂志,2007,31(6):395-399. 被引量:3
  • 2Thirion JP. Non-rigid matching using demons. Proceedings of IEEE CVPR96, 1996:245 -251. 被引量:1
  • 3Ibanez L, Schroeder W. The ITK software guide: the insight segmentation and registration toolkit. Versionl. 4. New York: Lydia Ng and Josh Cates Publisher by Kitware, Inc, 2003. 被引量:1
  • 4Gaser C, Volz HP, Kiebel S, et al. Detecting structural changes in whole brain based on nonlinear deformations-Appllcation to schizophrenia research. NeuroImage, 1999, 10: 107- 133. 被引量:1
  • 5Chen CM, Chou YH, Han KC, et al. Breast lesions on sonograms: computer-aided diagnosis with nearly setting- independent features and artificial neural networks. Radiology, 2003, 226(2) : 504 -514. 被引量:1
  • 6Gander W, Golub GH, Strebel R. Least-squares fitting of circles and ellipses. BIT, 1994, 34:558 -578. 被引量:1
  • 7汪源源,沈嘉琳,王涌,王怡.基于形态特征判别超声图像中乳腺肿瘤的良恶性[J].光学精密工程,2006,14(2):333-340. 被引量:15
  • 8Vapnik VN. The nature of statistical learning theory. NY: Springer-Verlag, 1995. 被引量:1
  • 9Chang CC, Lin CJ. LIBSVM: a library for support vector machines, http://www, csie. ntu. edu. tw/- cjlin! libsvm, 2001. 被引量:1

二级参考文献19

  • 1陈克敏,秦茜淼,茅蓉,陈为民,华秀云.超声检查在良恶性乳腺肿块评估中的作用[J].中华放射学杂志,1995,29(3):154-157. 被引量:14
  • 2STAVROS A T,THICKMAN D,RAPP C L,et al.Solid breast nodules:Use of sonography to distinguish between benign and malignant lesions[J].Radiology,1995,196:123-134. 被引量:1
  • 3HUBER S,DANES J,ZUNA I,et al.Relevance of sonographic B-mode criteria and computer-aided ultrasonic tissue characterization in differential/diagnosis of solid breast masses[J].Ultrasound in Med.&Biol,2000,26 (8):1243-1252. 被引量:1
  • 4CHOU Y H,TIU C M,HUNG G S,et al.Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis[J].Ultrasound in Med.&Biol,2001,27(11):1493-1498. 被引量:1
  • 5CHEN D R,CHANG R F,KUO W J,et al.Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks[J].Ultrasound in Med.&Biol,2002,28(10):1301-1310. 被引量:1
  • 6JOO S,YANG Y S,MOON W K,et al.Computer-aided diagnosis of solid breast nodules:use of an artificial neural network based on multiple sonographic features[J].Medical Imaging,2004,23(10):1292-1300. 被引量:1
  • 7BOUKERROUI D,BASSET O,GUERIN N,etal.Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation[J].European Journal of Ultrasound,1998,8(2):135-144. 被引量:1
  • 8MADABHUSHI A,METAXAS D N.Combining low-,high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions[J].Medical Imaging,2003,22(2):155-169. 被引量:1
  • 9HUANG Y L,CHEN D R.Watershed segmentation for breast tumor in 2-D sonography[J].Ultrasound in Med.& Biol,2004,30(5):625-632. 被引量:1
  • 10AMINI A A,WEYMOUTH T E,JAIN R C.Using dynamic programming for solving variational problems in version[J].Pattern Analysis and Machine Intelligence,1990,12(9):855-867. 被引量:1

共引文献16

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部