期刊文献+

多支持向量机的乳腺肿瘤识别 被引量:2

Breast Tumor Recognition Based on Multiple Support Vector Machine
下载PDF
导出
摘要 针对乳腺肿块具有大小不固定和个体差异等特性,提出了一种多支持向量机对乳腺肿块的识别方法.选择八个方向上的支持向量生成分类器,选取高斯核函数作为核函数,其中取σ=30时分割正确率达到97.3%.表明多支持向量机应用于乳腺肿块识别可以获得较好的识别效果,为进一步的医学诊断提供可靠的依据. In view of the varying size and individnal differences of breast tamors,this paper provides a method for breast tumour recognition——Multi-Support Vector Machine(MSVM).Support Vector Machine(SVM) in eight direction of bump area are taken to generate a vector classifier.Gauss kernel function was as the selected kernel function.The breast tumour recognition accuracy can reach 97.3% when σ=30.The experiment shows that the application of MSVM in breast tumor recognition can achieve good result,and provide a reliable basis for further medical diagnosis.
出处 《西安工业大学学报》 CAS 2011年第2期160-163,共4页 Journal of Xi’an Technological University
关键词 多支持向量机 核函数 肿瘤识别 图像分割 边缘提取 multi-support vector machine kernel function tumour recognition image segmentation edge detection
  • 相关文献

参考文献8

二级参考文献30

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:356
  • 2陈克敏,秦茜淼,茅蓉,陈为民,华秀云.超声检查在良恶性乳腺肿块评估中的作用[J].中华放射学杂志,1995,29(3):154-157. 被引量:14
  • 3Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988.. 被引量:2
  • 4罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000.. 被引量:1
  • 5田捷.实用图像处理技术[M].北京:电子工业出版社,1994.. 被引量:2
  • 6Amendolia SR,Bisogni MG,Bottigli U,et al.The CALMA project: a CAD tool in breast radiography.Nuclear Instruments and Methods in Physics Research,2001;46:107. 被引量:1
  • 7Papadopoulos A,Fotiadis DI,Likas A.An automatic microcalcification detection system based on a hybrid neural network classifier.Artificial Intelligence in Medicine,2002;25:149. 被引量:1
  • 8Lee SK,Lo CS,Wang CM.A computer-aided design mammography screening system for detection and classification of microcalcifications.International Journal of Medical Informatics,2000;60:29. 被引量:1
  • 9Papadopoulos A,Fotiadis DI,Likas A.An automatic microcalcification detection system based on hybrid neural network classifier.Artificial Intelligence in Medicine,2002;25:149. 被引量:1
  • 10Mallat S.A theory of multiresolution signal decomposition: The wavelet transform,IEEE Trans PAMI-11,1998;7:674. 被引量:1

共引文献151

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部