期刊文献+

流体动力学软件在孔板测量中的应用 被引量:4

Application of fluid dynamics software in orifice flow measurement
下载PDF
导出
摘要 针对孔板流量计流场分布问题,应用计算流体动力学软件,对流体流经标准孔板前后的流动状态进行仿真研究,得到了流体流经标准孔板前后的压力流线、速度流线以及压力的分布曲线.通过对流线和曲线的分析,得出了流体流经孔板流量计的一些特点.该研究结果对于应用计算流体动力学软件测量流体的流量提供了方向,同时,对标准孔板流量计的开发也具有一定的指导及借鉴意义. Aiming at the flow field distribution problem in the orifice flowmeter, the flow behavior of fluid across the standard orifice was simulated using the computational fluid dynamics software. The pressure and velocity streamline in the standard orifice flowmeter as well as the pressure distribution curve of the standard orifice in the centefline were obtained. The flow characteristics of fluid across the standard orifice flowmeter were determined through analyzing the streamline and pressure distribution curve. The results are useful to the flow measurement of fluid by using the computational fluid dynamics software, and have the instructive and available significance for the development of standard orifice flowmeter.
作者 高松巍 勾丹
出处 《沈阳工业大学学报》 EI CAS 2009年第1期84-88,共5页 Journal of Shenyang University of Technology
基金 国家科技支撑计划资助项目(2006BAK02B0105)
关键词 计算流体动力学 流量测量 标准孔板 流量计 流动特性 computational fluid dynamics flow measurement standard orifice flowmeter flow characteristics
  • 相关文献

参考文献12

二级参考文献48

  • 1翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学学报,2005,26(2):160-165. 被引量:81
  • 2韩艳霞,金辉.计算流体力学通用软件-STAR-CD简介[J].甘肃科技,2005,21(9):70-70. 被引量:12
  • 3[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393. 被引量:1
  • 4[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011. 被引量:1
  • 5[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179. 被引量:1
  • 6[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293. 被引量:1
  • 7[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980. 被引量:1
  • 8[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372. 被引量:1
  • 9[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136. 被引量:1
  • 10[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981. 被引量:1

共引文献297

同被引文献13

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部