期刊文献+

1+1维Wolf-Villain模型奇异标度行为的数值模拟 被引量:3

Anomalous Dynamic Scaling in 1+1 Dimensional Wolf-Villain Model
下载PDF
导出
摘要 采用Kinetic Monte Carlo(KMC)方法对描述分子束外延生长(MBE)的1+1维Wolf-Villain模型进行大尺寸和长生长时间的数值模拟研究,以消除渡越行为的影响.计算得到整体和局域标度指数.结果显示,在所模拟的空间和时间尺度范围内,1+1维Wolf-Villain模型仍呈现出固有奇异标度行为.这一结论与López等人最近的理论分析结果不一致. 1 + 1 dimensional Wolf-Villain model for molecular-beam epitaxy(MBE) growth is investigated with kinetic Monte-Carlo simulation in large scale and during long growth time so that crossover effects are eliminated. Global and local dynamic exponents are obtained. It is shown that Wolf-ViUain model in 1 + 1 dimensions exhibits intrinsic anomalous scaling behavior in time and length simulated. The result is inconsistent with theoretical analysis by Lopez.
出处 《计算物理》 EI CSCD 北大核心 2009年第2期287-292,共6页 Chinese Journal of Computational Physics
基金 国家自然科学基金(批准号:10674177) 教育部留学回国人员科研启动基金(批准号:200318)资助项目
关键词 表面界面粗糙生长 Wolf-Villain模型 奇异动力学标度 KINETIC MONTE CARLO模拟 kinetic roughening of surfaces and interfaces Wolf-Villain model anomalous scaling kinetic Monte-Carlo simulation
  • 相关文献

参考文献3

二级参考文献34

  • 1韩飞,马本堃.直接标度分析动力生长[J].物理学报,1996,45(5):826-831. 被引量:1
  • 2Zhang Z,Chen X,Lagally M G.Bonding-geometry dependence of fractal growth on metal surfaces[J].Phys Rev Lett,1994,73:1829-1832. 被引量:1
  • 3Yang Y G,Johnson R A,Wadley H N G.Kinetic Monte Carlo simulation of heterometal epitaxial deposition[J].Surf Sci,2002,499:141-151. 被引量:1
  • 4Nurminen L,Kuronen A,Kaski K.Kinetic Monte Carlo simulation of nucleation on patterned substrates[J].Phys Rev B,2001,63:35407-35414. 被引量:1
  • 5Larsson M I.Kinetic Monte Carlo simulations of adatom island decay on Cu(111)[J].Phys Rev B,2001,64:115428-115438. 被引量:1
  • 6Ovesson S,Bogicevic A,Lundqvist B I.Origin of compact triangular islands in metal-on-metal growth[J].Phys Rev Lett,1999,83:2608-2611. 被引量:1
  • 7Huang H,Gilmer G H,Rubia T Diaz de la.An atomistic simulator for thin film deposition in three dimensions[J].J Appl Phys,1998,84:3636-3649. 被引量:1
  • 8Liu S J,Wang E G,Woo C H,Huang H.Three-dimensional Schwoebel-Ehrlich barrier[J].J Computer-aided Mater Design,2001,7:195-201. 被引量:1
  • 9Liu S J,Huang H,Woo C W.Schwoebel-Ehrlich barrier:from two to three dimensions[J].Appl Phys Lett,2002,80:3295-3297. 被引量:1
  • 10LagallyMG ZhangZ.Thin—film cliffhanger[J].Nature,2002,417:907-910. 被引量:1

共引文献13

同被引文献11

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部