期刊文献+

含时空关联噪声生长方程的标度奇异性分析 被引量:2

Anomalous scaling of the growth equations with spatially and temporally correlated noise
原文传递
导出
摘要 基于动力学重整化群理论研究表面界面生长动力学标度奇异性问题,得到含时空关联噪声的表面生长方程标度奇异指数的一般结果,并将此方法应用于几种典型的局域生长方程——Kardar-Parisi-Zhang(KPZ)方程、线性生长方程、Lai-Das Sarma-Villain(LDV)方程.结果表明,在长波长极限下局域生长方程的动力学标度奇异性与最相关项、基底维数以及噪声有关,并且若出现标度奇异性,只会是超粗化(super rough)奇异标度行为,而不是内禀(intrinsically)奇异标度行为. A dynamic renormalization-group method is generalized to explore the anomalously dynamic scaling property of kinetic roughening growth equation and the general conclusion on the anomalous exponents of the growth equation with spatially and temporally correlated noise is drawn. The results of the anomalous exponents are employed in several typical local growth equations, which include the Kardar-Parisi-Zhang(KPZ) equation, linear equation and Lai-Das Sarma-Villain(LDV) equation, to judge the condition of anomalous scaling behaviors. Analysis shows that within the long wavelength limit the dynamic scaling property of a growth equation is related to the most relevant term, the dimension of the system and noise; and if the anomalous scaling of the equation exists, super-roughening instead of intrinsic anomalous roughening will be displayed in local growth models.
作者 张丽萍
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第5期2902-2906,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10674177) 教育部留学回国人员科研启动基金(批准号:200318) 中国矿业大学青年基金(批准号:2006A043)资助的课题~~
关键词 标度奇异性 动力学重整化群理论 时空关联噪声 anomalous scaling, dynamic renormalization-group theory, spatially and temporally correlated noise
  • 相关文献

参考文献36

  • 1Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium ( Cambridge : Cambridge University Press) 被引量:1
  • 2Barabasi A L, Stanley 1995 Fractal Concepts in Surface Growth ( Cambridge : Cambridge University Press) 被引量:1
  • 3Halpin H T, Zhang Y C 1995 Phys. Rep. 254 215 被引量:1
  • 4Krug J 1997 Adv. Phys. 46 139 被引量:1
  • 5Family F, Vicsek T 1991 Dynamics of Fractal Surfaces ( Singapore : World Scientific Press) 被引量:1
  • 6Family F, Viesek T 1985 J. Phys. A 18 L75 被引量:1
  • 7Das Sarma S, Lanczycki C J, Kotlyar R et al 1996 Phys. Rev. E 53 359 被引量:1
  • 8Bru A, Pastor J M, Femaud Iet al 1998 Phys. Rev. Lett. 81 4008 被引量:1
  • 9Santamaria J, Gomez M E, Vicent J L et al 2002 Phys. Rev. Lett. 89 190601 被引量:1
  • 10Huo S, Schwarzacher W 2001 Phys. Rev. Lett. 86 256 被引量:1

二级参考文献25

  • 1韩飞,马本堃.直接标度分析动力生长[J].物理学报,1996,45(5):826-831. 被引量:1
  • 2Halpin Healy T,Zhang Y C.Kinetic roughening phenomena,stochastic growth,directed polymers and all that[J].Phys Rep,1995,254:215. 被引量:1
  • 3Meakin P.Fractal,scaling and growth far from equilibrium[M].Cambridge:Cambridge University Press,1998:401. 被引量:1
  • 4Krug J.Origins of scale invariance in growth process[J].Adv Phys,1997,46(2):139. 被引量:1
  • 5Family F,Vicsek T.Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model[J].J Phys A,1985,18:L75. 被引量:1
  • 6Krug J.Turbulent interfaces[J].Phys Rev Lett,1994,72 (18):2907. 被引量:1
  • 7Das Sarma S,Lanczycki C J,Kotlyar R,et al.Scale invariance and dynamical correlations in growth models of molecular beam epitaxy[J].Phys Rev,1996,E53 (1):359. 被引量:1
  • 8López J M,Rodriguez M A.Lack of self-affinity and anomalous roughening in growth processes[J].Phys Rev,1996,E54(3):R2189. 被引量:1
  • 9López J M,Rodriguez M A,Cuerno R.Super roughening versus intrinsic anomalous scaling of surfaces[J].Phys Rev,1997,E56(4):3993. 被引量:1
  • 10Amar G,Lam P M,Family F.Groove instabilities in surface growth with diffusion[J].Phys Rev,1993,E47(5):3242. 被引量:1

共引文献10

同被引文献60

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部