期刊文献+

基于多重分形与CPSO-SVM的车辆传动箱状态识别研究

Study on the State Recognition of Vehicle Gearbox based on Multi-fractal and CPSO-SVM
原文传递
导出
摘要 针对车辆传动箱振动信号的非线性,提出一种将多重分形与支持向量机相结合的状态识别方法。运用奇异谱和广义维数来描述其振动信号特征,并将其作为支持向量机的输入特征量。将改进的混沌粒子群算法引入到支持向量机参数优化中,实现对惩罚函数c和径向基函数σ的智能优化选取。实验结果表明,该方法建立的SVM分类模型能够对车辆传动箱不同运行状态进行分类,并且具有更高的准确率。 For the nonlinear vibration signals caused by vehicle gearbox,a state recognition method combined of multi-fractal and support vector machine is proposed.The vibration signal characteristics are described by using the singular spectrum and generalized dimension which as the input into characteristics of SVM.The intelligent optimization selected of penalty function c and radial basis function σ is realized are through introducing the improved chaotic particle swarm optimization algorithm into support vector machine parameter optimization.The results show that the different operational status of the vehicle gearbox can be classified by using SVM classification model established by this method,and the accuracy is increased.
出处 《机械传动》 CSCD 北大核心 2015年第5期165-168,共4页 Journal of Mechanical Transmission
关键词 多重分形 混沌粒子群 支持向量机 车辆传动箱 状态识别 Multi--fractal Chaos particle swam optimization Support vector machine Vehicle gearbox State recognition
  • 相关文献

参考文献10

二级参考文献45

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部