摘要
由于非线性系统存在长期不可预测性 ,基于此 ,建立了基于时间序列的柯尔莫哥洛夫熵求解方法 ,并利用柯尔莫哥洛夫熵求取了复杂机械系统状态的最大可预测的点数。这一研究为确立复杂设备状态预测的可信区间提供了理论支持 。
The state of the nonlinear system usually can not be forecasted in long period of time, so the definition of Kovmogolov entropy is described, and the method for acquiring K2-entropy is given based on time series. The K2-entropy of vibration signal is studied, and the maximum number of predictability points is given. The research presents a credible prediction region and provides a reliable theory foundation, as well as the idea for condition prediction of complex mechanical systems. The conclusion in the forecast can be carried out only within the furthest forecast time limit for the condition prediction of machinery.
出处
《振动与冲击》
EI
CSCD
北大核心
2004年第3期101-102,116,共3页
Journal of Vibration and Shock
基金
辽宁省自然科学基金项目