期刊文献+

基于卡尔曼/粒子组合滤波器的组合导航方法研究 被引量:18

Kalman/Particle Filter for Integrated Navigation System
下载PDF
导出
摘要 粒子滤波在组合导航系统非线性非高斯条件下的滤波估计中获得广泛关注,但捷联惯导误差模型维数较高,直接应用粒子滤波会带来维数灾难。设计了用于SINS/GPS组合导航的卡尔曼/粒子组合滤波算法,采用卡尔曼滤波和粒子滤波分别对系统的线性和非线性状态进行估计,降低粒子滤波器状态维数,避免维数灾难。采用系统残差采样法的规则化粒子滤波器,有效缓解粒子贫化问题,并减少计算负担。仿真结果表明卡尔曼/粒子组合滤波方法的估计性能与粒子滤波相当,但计算复杂度前者要低得多。 Particle filter is a best way for the state estimation of highly nonlinear integrated navigation systems with non-Gaussian uncertainties. Since the error model of SINS has high dimensions, traditional particle filter would bring hard computation. A new Kalman/Particle mixed filter used on SINS/GPS integrated navigation system was proposed. The new method divides the system into two sub-models, one is linear, the other one is nonlinear, and then implement Kalman filter and particle filter separately. Residual-systematic resampling and regularized algorithms were involved to decrease particle filter’ particles collapse weakness and hard computation. The simulation results show that their performance is almost equal, but the computation complexity of the Kalman/particle filter is much lower than traditional particle filter.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第1期220-223,共4页 Journal of System Simulation
基金 863计划(2006AA12Z305)
关键词 捷联惯导 组合导航 粒子滤波器 卡尔曼/粒子组合滤波器 strap-down inertial navigation system integrated navigation system particle filter kalman/particle filter
  • 相关文献

参考文献11

  • 1GORDON N J, SALMOND D J, SMITH A F M. A Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings on Radar and Signal Processing (S0956-375X), 1993, 140(2): 107-113. 被引量:1
  • 2李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 3C Musso, N Oudjane, F LeGland. Improving regularised particle filters [M]// Sequential Monte Carlo Methods in Practice, A Doucet, J F G de Frcitas, N J Gordon, Eds. New York, USA: Springcr-Vcrlag, 2001. 被引量:1
  • 4N Oudjane, C Musso. Progressive correction for regularized panicle filter [C]// FUSION 2000. Proceedings of the Third International Conference on, 10-13 July 2000:THB2/10-THB2/17 vol. 2. 被引量:1
  • 5Miodrag Bolic, Petar Miodrag Bolic Petar. New resamping algorithms for particle filters [C]// Acoustics, Speec, and Signal Processing, 2003 Proceedings (ICASSP-03), 2003 IEEE International Conference, 6-10 April 2003. USA: IEEE, 2003: 589-592. 被引量:1
  • 6Thomas Schon, Fredrik Gustafsson, Per-John Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-space Models [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING (S1053-587X), 2005, 53(7): 2279-2289. 被引量:1
  • 7Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering [J]. Statistics and Computing (S0960-3174), 2000, 10(3): 197-208. 被引量:1
  • 8Audrey Giremus, Jean-Yves Tourneret, Petar M Djuric. An improved regularized particle filters for gps/ins integration [C]// IEEE 6^th Workshop on Signal Processing Advances in Wireless Communications, 2005. USA: IEEE, 2005: 1013-1017. 被引量:1
  • 9魏春岭.非线性滤波与神经网络在导航系统中的应用研究[D].北京:北京航空航天大学自动化学院,2002. 被引量:2
  • 10Arulampalam M S, Maskell S, Gordon N. A tutorial on particle filters for online nonlinear/non-nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing (S1053-587X), 2002, 50(2): 174-188. 被引量:1

二级参考文献10

  • 1Gordon N,Salmond D,et al.Novel approach to nonlinear/ nongaussian bayesian state estimation[J].Proc.Inst.Elect.Eng.F (S0956-375X),1993,140:107-113. 被引量:1
  • 2Fredrik Gustafsson,Fredrik Gunnarsson.Particle Filters for Positioning,Navigation,and Tracking[J].IEEE Transactions On Signal Processing (S1053-587X),2002,50(2):425-437. 被引量:1
  • 3Ba-Ngu Vo,Ba-Tuong Vo,Sumeetpal Singh.Sequential Monte Carlo Methods for Static Parameter Estimation in Random Set Models[C]//SSNIP 2004,313-318. 被引量:1
  • 4Arulampalam M S,Maskell S,Gordon N J.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing (S1053-587X),2002,50(2):174-188. 被引量:1
  • 5Liu J,Chen R.Sequential Monte Carlo Methods for Dynamic Systems[J].Journal of the American Statistical Association (S0162-1459),1998,93:1032-1044. 被引量:1
  • 6Doucet A,Godsill S J,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing (S0960-3174),2000,10(3):197-208. 被引量:1
  • 7de Freitas J F G.Bayesian Methods for Neural Networks[D].PhD thesis,Cambridge University Engineering Department,1999. 被引量:1
  • 8Julier S J,Uhlmann J K.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans.A.C.(S0018-9286),2000,45(3):477-482. 被引量:1
  • 9Wan E A,Merwe R.The Unscented Kalman Filter for Nonlinear Estimation[C]//IEEE Symp.2000,153-158. 被引量:1
  • 10Xiaohong Sheng.Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network[C]//Information Processing in Sensor Networks,2005,181-188. 被引量:1

共引文献10

同被引文献130

引证文献18

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部