期刊文献+

基于微粒群算法的网格工作流优化调度问题的研究

Study on grid workflow scheduling model based on particle swarm optimization algorithm
下载PDF
导出
摘要 网格工作流中的调度问题是一个复杂且具有挑战性的问题,它影响着网格工作流执行成功与否及效率的高低。针对具有时序和因果约束关系的网格工作流优化调度问题进行了研究,建立了网格工作流的任务调度模型和调度问题的目标模型,并应用微粒群算法来优化网格工作流中任务的调度。实验结果证明该算法优于传统的调度算法。 The grid workflow scheduling is one of the challenging and complex problems, which affects the execution and efficiency of gridworkflow. Grid workflow scheduling is researched, which consists ofsequence and causality constraints. The Grid tasks scheduling model and the objective model are introduced. A new optimized approach - particle swarm algorithm (PSO) - is proposed to schedule tasks in grid workflow. Finally, experiment results show our algorithm is available and is better than that of some traditional algorithms.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第23期5967-5970,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60673119) 国家863高技术研究发展计划基金项目(2006AA04Z152) 湖南省科技计划基金项目(2007GK3054)。
关键词 网格工作流 网格任务 优化 调度 微粒群算法 grid workflow grid tasks optimization scheduling particle swarm optimization algorithm
  • 相关文献

参考文献11

  • 1Casanova H, Legrand A, Zagorodnov Z, et al. Heuristics for scheduling parameter sweep applications in grid environments [C]. 9th Heterogeneous Computing Workshop. Washington: IEEE Computer Society Press, 2000:349-363. 被引量:1
  • 2Wu M Y, Shu W, Gu J.Efficient local search for DAG scheduling [J]. IEEE Transaction and Parallel and Distributed Systems, 2001,12(6):617-628. 被引量:1
  • 3Buyya R, Abramson D, Giddy J. An economy driven resource management architecture for global computational power grids [C]. Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications. Las Vegas, USA: CSREA Press,2000:517-525. 被引量:1
  • 4Buyya R, Giddy J, Abramson D. An evaluation of economybased resource trading and scheduling on computational power grids for parameter sweep applications [C]. Proceedings of the 2nd International Workshop on Active Middleware Services. Pittsburgh, USA: Kluwer Academic Press, 2000:221-230. 被引量:1
  • 5郭文彩,杨扬.基于遗传算法的网格服务工作流调度的研究[J].计算机应用,2006,26(1):54-56. 被引量:12
  • 6Chang D H,Son J H,Kim M H.Critical path identification in the context of a workflow[J].Information and Software Technology, 2002,44(7) :405 -417. 被引量:1
  • 7曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 8Eberhart R C,Shi Y.Paiticle swam optimization: Developments, applications and resources[C]. Proc of Congress on Evolutionary Computation. Seoul:IEEE Service Center, 2001:81-86. 被引量:1
  • 9李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 10Zeng L Z,Benatallah B,Dumas M.Quality driven web services composition[C].Proceedings of the International Conference on World Wide Web. Budapest, Hungary:ACM Press,2003:411- 421. 被引量:1

二级参考文献17

  • 1Salmen A, Ahmad I, Al-Madani B. Particle swarm optimization for task assignment problem[ J]. Microprocessors and Microsystems,2002, 26: 363-371. 被引量:1
  • 2Shi Y, Eberhart R C. Empirical study of particle swarm optimization[ A]. Proceedings of the 1999 Congress on Evolutionary Computation[C]. Piscataway, NJ: IEEE Service Center, 1999. 1945-1950. 被引量:1
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proc. IEEE International Conference on Neural Networks, Ⅳ[ C]. Piscataway, NJ: IEEE Service Center, 1995. 1942-1948. 被引量:1
  • 4Eberhart R C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resources[ C]. Proc. Congress on Evolutionary Computation 2001. Piscataway, NJ: IEEE Press, 2001. 81-86. 被引量:1
  • 5Maurice C, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[ J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 6Kennedy J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance[ A]. Proceedings of the Congress on Evolutionary Computation[ C]. Piscataway, NJ: IEEE Press, 1999. 1931-1938. 被引量:1
  • 7GEIST GA, HEATH MT, PEYTON BW, eta/. A user's guide to PICL: a portable instrumented communications library[R]. Technical Report ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1992. 被引量:1
  • 8BHANDARI D, MURTHY CA, PAL SK. Genetic Algorithm with elitist model and its convergence[J]. Int. J. Pattern Recognition Artif. Intell, 1996, 10(6) :731 -747. 被引量:1
  • 9KREINOVICH V, QUINTANA C, FUENTES O. Genetic algorithms: What fitness scaling is optimal?[J]. Cybernetics and Systems, 1993, 24(1) : 9 - 26. 被引量:1
  • 10ABRAHAM A, BUYYA R. Nature's heuristics for scheduling jobs on computational grids[A]. The 8th Int'l Conf on Advanced Computing and Communication (ADCOM 2000)[C]. Cochin, India, 2000. 被引量:1

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部