期刊文献+

一种改进型遗传算法的网格工作流调度研究 被引量:2

Research on Grid Workflow Scheduling Based on Improved Genetic Algorithm
下载PDF
导出
摘要 用有向无环图表示的网格工作流调度问题是一种典型的NP-完全问题,因而,有效的调度算法是必不可少的。为解决这一问题,提出了一种改进型的遗传算法。运用适应度差的染色体与最优个体进行二级优先杂交和变异,不仅保障了种群的多样性,也提高了种群的收敛速度。采用Gridsim工具进行模拟后,证实该算法较标准的遗传算法更适用、更有效。 Grid workflow scheduling represented by directed acyclic graph(DAG) is a typical NP-complete problem,and thus a scheduling algorithm of high efficiency is required.So an improved genetic algorithm was proposed to solve this problem.In the algorithm,chromosomes of poor fitness made secondary preferential hybridization and mutation with the overall best individual.It not only guarantees the population diversity but increases the convergence rate of population.Simulation results based on Gridsim show that the improved algorithm is available and better than standard genetic algorithm
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2012年第3期32-35,111,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 重庆市自然科学基金项目(2008BB2296)
关键词 网格工作流 调度问题 改进型遗传算法 二级优先杂交和变异 Grid workflow Scheduling problem Improved genetic algorithm Secondary preferential hybridization and mutation
  • 相关文献

参考文献5

二级参考文献36

  • 1金海,陈汉华,吕志鹏,宁小敏.CGSP作业管理器合成服务的QoS优化模型及求解[J].计算机学报,2005,28(4):578-588. 被引量:53
  • 2杨博,陈志刚.一种基于双层进化结构的网格任务调度算法[J].计算机工程与应用,2006,42(15):4-6. 被引量:6
  • 3袁禄来,曾国荪,姜黎立,蒋昌俊.网格环境下基于信任模型的动态级调度[J].计算机学报,2006,29(7):1217-1224. 被引量:53
  • 4WANG RC,CHEN RY,CHAO HC.Mobile IPv6 and AAA Architecture Based on WLAN [J].International Journal of Network Management archive,2004,14(5).305-313. 被引量:1
  • 5Freund R F,Gherrity M,Ambrosius S,et al.SCheduling resources in multi-user,heterogeneous,computing environments with SmartNet.In'Proc.The 7th IEEE Heterogeneous Computing Workshop (HCW' 98),Orlando,Florida,USA,Mat. 1998.184-199. 被引量:1
  • 6Kim J-K,et al.Dynamic Mapping in fl Heterogeneous Environment with Tasks Having Priorities and Multiple Deadlines.Heterogeneous Computing Workshop,Nice,France,Apr.2003. 被引量:1
  • 7Ding Q,Chen G.A Benefit Function Mapping Heuristic for a Class of Meta-tasks in Grid Environments.In:CCGRID Workshop on Scheduling and Load Balancing on Clusters,Brisbane, Australia, May 2001.654-659. 被引量:1
  • 8HE Xiaoshan,SUN Xianhe,LASZEWSKI G V.QoS guided minmin heuristic for grid task scheduling [J].The Journal of Computer Science and Technology,2003,18(4):442-451. 被引量:1
  • 9Abrahan A,Buyya R,Nath B.Nature's heuristics for scheduling jobs on computational grids[C] ∥The 8th IEEE International Conference on Advance Computing and Communications India.2000. 被引量:1
  • 10Karonls NT,Tonnen B,Foster I.MPICH-G2:A Grid Enabled Implementation of the Message Passing Interface[J].Journal of Parallel(JPDC),2003,163(5):551-563. 被引量:1

共引文献81

同被引文献23

  • 1林丹,丑英哲,王萍.求解车辆路径问题的一种遗传算法[J].系统管理学报,2006,15(6):528-533. 被引量:6
  • 2陈世哲,刘国栋,浦欣,浦昭邦,胡涛,刘宛予.基于优势遗传的自适应遗传算法[J].哈尔滨工业大学学报,2007,39(7):1021-1024. 被引量:31
  • 3Dantzig G B,Ramser J H.The Truck-dispatching Problem[J].Management Science,1959,6:80-91. 被引量:1
  • 4Ornbuki B,Nakamura M.Osamu MA Hybrid Search Based on Genetic Algorithm and Tabu Search for Vehicle Routing[C].presented at the 6th International Conference on Artificial Intelligence and Soft Computing,Banff, Canada,2002,7:176-181. 被引量:1
  • 5Brasy O.A reactive variable neighborhood search for the vehicle routing problem with time windows[J].Informs Journalon Computing,2003,15(4):347-368. 被引量:1
  • 6Calvete H I,Gale C,OIiveros M J.A goal programming approach to vehicle routing problems with soft time windows[J].European Journal of Operational Research,2007,177:1720-1733. 被引量:1
  • 7Azi N,Gendreau M,Potvin J Y.An exact algorithm for a single-vehicle routing problem with time windows and multipleroutes[J].European Journal of Operational Research,2007,178:755-766. 被引量:1
  • 8LARRANAGA P, KARSHENAS H, BIELZA C, et al. A review on evolutionary algorithms in Bayesian network learning and inference tasks [ J ]. Information sciences ,2013,233 ( 2 ) : 109 - 125. 被引量:1
  • 9LI X L, HE X D. A hybrid particle swarm optimization method for structure learning of probabilistic relational models[ J ]. Information sciences ,2014,283:258 - 266. 被引量:1
  • 10ZHU Y, LIU D, JIA H. A new evolutionary computation based approach for learning Bayesian network [ J]. Procedia engineering,2011,15:4026 - 4030. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部