期刊文献+

基于遗传算法的网格服务工作流调度的研究 被引量:12

Scheduling of grid workflow for grid services based on genetic algorithm
下载PDF
导出
摘要 网格服务的提出为网格工作流的研究提供了新的契机与挑战,由网格服务组成的工作流(GSF)的调度问题是一个典型的NP问题。利用遗传算法所具有的并行性和全局解空间搜索的特点,针对网格服务调度问题,提出基于遗传算法的网格服务工作流调度算法GSFGA,并改进了遗传算法的收敛特性,通过分析实验结果证明该算法优于传统的调度算法。 The service oriented grid work_flow, GSF, has been a research focus in grid technology. As an NP problem, grid service scheduling is difficult to solve by means of classic algorithms. Featured in searching concurrently and globally, genetic algorithm can be a better option for solving GSF scheduling problem. Therefore, a GA-based grid service scheduling algorithm, GSFGA, was provided for obtaining the best GSF instance with highest fitness, Experiment results prove it available and better than some traditional algorithms. As a conclusion, the further work was also pointed out.
作者 郭文彩 杨扬
出处 《计算机应用》 CSCD 北大核心 2006年第1期54-56,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(90412012)
关键词 网格服务 工作流 调度 遗传算法 grid service workflow scheduling genetic algorithm
  • 相关文献

参考文献11

  • 1FOSTER I, KESSELMAN C, NICK J. et al. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, Globus Project[EB/OL]. http://www. globus. org/research/papers/ogsa. pdf. 被引量:1
  • 2VAN DER AALST W, VAN HEE K. Workflow Management Models, Methods, and Systems[M]. The MIT Press, 2004. 被引量:1
  • 3BUYYA R, ABRAMSON D, GIDDY J. An economy driven resource management architecture for global computational power grids[A]. Int'l Conf on Parallel and Distributed Processing Techniques and Applications[C]. Las Vegas, 2000. 被引量:1
  • 4FREY J, TANNENBAUM T, FOSTER I, et al, Condor-G: A computation management agent for multi institutional grids[J]. Cluster Computing, 2002, (5) : 237 - 246. 被引量:1
  • 5CHAPIN S, KARPOVICH J, GRIMSHAW A. The Legion resource management system[A]. In 5th Workshop on Job Scheduling Strategies for Parallel Processing[C]. 1999. 被引量:1
  • 6GOLDBERG DE. Genetic Algorithms in Search, Optimization 6 Machine Learning[M]. Addison-Wesley, Massachusetts, 1989. 被引量:1
  • 7PRODAN R. Experiment management, performance optimization,and tool integration in grid computing[D]. Institute for Computer Science University of Innsbruek, 2004. 被引量:1
  • 8GEIST GA, HEATH MT, PEYTON BW, eta/. A user's guide to PICL: a portable instrumented communications library[R]. Technical Report ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1992. 被引量:1
  • 9BHANDARI D, MURTHY CA, PAL SK. Genetic Algorithm with elitist model and its convergence[J]. Int. J. Pattern Recognition Artif. Intell, 1996, 10(6) :731 -747. 被引量:1
  • 10KREINOVICH V, QUINTANA C, FUENTES O. Genetic algorithms: What fitness scaling is optimal?[J]. Cybernetics and Systems, 1993, 24(1) : 9 - 26. 被引量:1

同被引文献115

引证文献12

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部