摘要
用新的Ditzian光滑模和统一的新型K泛函导出了利用Poisson过程及局部平均采样定义的Szász-Kantorovich算子逼近确定性信号的强逆不等式,进而给出了[0,∞)上的有界连续函数的光滑性与Szász-Kantorovich算子逼近误差的渐近关系.
In order to derive the strong converse inequality in connection with Szasz-Kantorovich operators by new Ditzian moduli of smoothness and unified K-function, Szasz-Kantorovich operators are definded by Poisson processes and sampling of local averages. Moreover, the asymptotic relations between smoothness of bounded continuous functions on [0, ∞) and error approximation of Szasz-Kantorovich operators are given.
出处
《天津大学学报》
EI
CAS
CSCD
北大核心
2008年第12期1518-1520,共3页
Journal of Tianjin University(Science and Technology)
基金
国家自然科学基金资助项目(10501026,60675010,10626029,60572113)
天津市自然科学基金资助项目(08JCYBJC09600)