期刊文献+

基于局域支持向量机的海浪水压场混沌预测 被引量:3

Chaos Prediction of Wave Hydrodynamic Pressure Signals Based on Local Support Vectors Machine
下载PDF
导出
摘要 针对海浪水压场的短时平稳性,采用局域支持向量机进行预测滤波。首先分析了海浪水压场信号的混沌特性,并根据其混沌特性,提取训练空间中与当前相点的行为特征密切相关的最近邻点作为训练样本对支持向量机进行训练,减少了训练样本的数目,节省了网络学习时间,从而可实时对网络参数进行更新,使支持向量机能够跟随海浪的变化。实际计算表明这种算法能够以较快的学习速度和较高准确度实现海浪预测,能够克服由于海浪的短时平稳性所带来的随时间的增长预测精度下降的问题。 Duo to the short-time stability of wave hydrodynamic pressure, a prediction filtering method of local support vector machine (LSVM) was proposed. Firstly the chaos character of wave hydrodynamic pressure signal was analyzed, and then the nearest samples which were intimately connected with the current phase point in behavioural trait were extracted from the training space to train the SVM. Then the number of training samples was reduced, and it saved the net learning time. So the SVM net parameters could be real-timely renewed and made the SVM fellow the wave changing. The calculation results show the method can realize the accurate fast prediction with short training time. At the time, it can overcome the prediction accuracy descent for the un-stability ascent with the time escaped.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第23期6470-6472,6476,共4页 Journal of System Simulation
基金 国防重点实验室基金项目资助(51444060101JB1108)
关键词 海浪水压场 支持向量机 混沌预测 短时平稳 wave hydrodynamic pressure support vector machine chaos prediction short-time stability
  • 相关文献

参考文献9

  • 1叶平贤,龚沈光编著..舰船物理场[M].北京:兵器工业出版社,1992:302.
  • 2林春生,邓大新,任德奎.风浪背景下舰船水压场信号的自适应AR模型预测滤波[J].海洋学报,2004,26(4):133-138. 被引量:16
  • 3张小兵,玄兆林.舰船水压信号的预测方法研究[J].数据采集与处理,2003,18(2):222-225. 被引量:10
  • 4黄润生, 黄浩..混沌及其应用[M],2005.
  • 5Martinerie J M, Albano A M, Mees A I, et al. Mutual information, strange ttraetors, and the optimal estimation of dimension [J]. Physical Review A (S1092-0145), 1992, 45 (10): 7058-7064. 被引量:1
  • 6Peter Grassberger, Itamar Procaccia. Measuring the strangeness of strange attractors [J]. Physical Review Letters (S1092-0145), 1983, 50(5): 346-349. 被引量:1
  • 7Simon Haykin.神经网络原理[M].第2版.叶世伟,史忠植译.北京:机械工业出版社,2004:229-250. 被引量:1
  • 8Floris Takens. Dynamical systems and turbulence [J]. Lecture Notes in Mathematics (Springer, Berlin, Germany) (S0075-8434), 1981,898: 366-381. 被引量:1
  • 9Matthew B. Kennel, Reggie Brown, Henry D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Physical Review A: (S1092- 0145), 1992, 45(6): 3403- 3411. 被引量:1

二级参考文献6

共引文献16

同被引文献32

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部