期刊文献+

基于小波分析的EEG信号自适应去噪的应用研究 被引量:2

Application Research Based on Wavelet Analysis in Removing Noises in EEG Signals Accordingly
下载PDF
导出
摘要 介绍了小波变换应用于EEG信号消噪处理中的原理及自适应噪声抵消器的原理。根据短时动态信号与平稳背景噪声的特征区别,对输入混合信号进行白化预处理,以时间序列的AR模型理论为依据,导出背景噪声白化滤波器的结构;将小波变换与自适应滤波相结合,对经白化处理后的信号进行自适应去噪,将去噪后信号及平均信号做了功率谱估计比较,实验结果表明该方法能有效地去除弱信号中的噪声。 This paper introduced the theory of the application of wavelet transform in removing noise in EEG signals and counteracting noises by adaptive filter. In virtue of the difference between short- time dynamic signal and windless background noises,we pretreated the mixed input signals by whitening them. Based on the theory of AR model,we educed the structure of the background noises whiten filter, by combining the wavelet transform and adaptive filtering, the noises were remove from the processed signals through adaptive filter. We also compared the PSE between the output and the average signal. The simulation experiment showed that this method removes noises efficiently in weak signals.
出处 《现代电子技术》 2007年第10期94-96,108,共4页 Modern Electronics Technique
关键词 小波变换 AR模型 自适应滤波器 LMS算法 功率谱估计 wavelets transform AR model adaptive filter LMS algorithms power spectrum estimation
  • 相关文献

参考文献11

二级参考文献18

  • 1高育林,罗永光,李伟鹏.诱发脑电信号的滤波-基于小波分析与维纳滤波[J].中国医学物理学杂志,1996,13(4):250-252. 被引量:4
  • 2吴兆熊 黄振兴 黄顺吉.数字信号处理(下册)[M].北京:国防工业出版社,1985.52-77. 被引量:4
  • 3[5]Simonh.自适应滤波器理论.北京:电子工业出版社,1998. 被引量:1
  • 4杨福生,小波变换的工程分析与应用,2000年 被引量:1
  • 5秦前清,实用小波分析,1994年 被引量:1
  • 6CIOFFI John M, THOMAS Kailath. Fast, recursive - least - squares transversal filters for adaptive filtering[J]. IEEE Trans on ASSP, 1984, 32(2): 304-337. 被引量:1
  • 7David L Donoho. Ideal spatial adaptation by wavelet shrinkage[J].Biometrika, 1994,81 (3):425-455. 被引量:1
  • 8GUO Dai-fei, ZHU Wei-hong. A study of wavelet thresholding de noising[J]. Signal Processing Proceedings, 2000,1:329-332. 被引量:1
  • 9N.Nikolave, Z.Nikolov. Wavelet domain wiener filter for ECG deno ising using improved signal estimate [J]. Speech and Signal Processing, 2000,6:3578-3581. 被引量:1
  • 10Park K L, Lee K J, Yooh H R. Application of a wavelet adaptive filter to minimize distortion of the ST-segment[J]. Med. Biol.Eng. Comput, 1998,36:581-586. 被引量:1

共引文献101

同被引文献13

  • 1陈峰,成新民.基于小波变换的信号去噪技术及实现[J].现代电子技术,2005,28(3):11-13. 被引量:36
  • 2王巧兰,季忠,秦树人.基于小波变换的脑电噪声消除方法[J].重庆大学学报(自然科学版),2005,28(7):15-17. 被引量:20
  • 3孙宇舸,叶拧,徐心和.基于PCA和小波变换的脑电信号的特征提取[C]∥2007中国控制与决策学术年会论文集.沈阳:东北大学出版社,2007:669-676. 被引量:4
  • 4PAVLYGINA R A, SAKHAROV D S, DAVYDOV V I. Spectral A- nalysis of the Human EEG during Listening to Musical Composi- tions [ J ]. Human Physiology,2004,30 ( 1 ) : 54 - 60. 被引量:1
  • 5PODDUBNAYA E P. EEG in Children : Periodometric Analysis, Ty- pology, and Age Peculiarities [ J ]. Neurophysiology, 2002,34 ( 5 ) : 373 - 385. 被引量:1
  • 6AKIN M. Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals [ J ]. Journal of Medical Systems, 2002,26 ( 3 ) :241 - 247. 被引量:1
  • 7章毓晋.图像工程(上册)图像处理[M].北京:清华大学出版社,2006. 被引量:19
  • 8Vidakovic B, Johnstone C B. On Time Dependent Wavelet Denoising[J]. In: IEEE Trans. Signal Processing, 1998,46 (9):2 549-2 551. 被引量:1
  • 9Lakhwinder K, Saveta G, Chauhan R C. Image Denoising Using Wavelet Thresholding [J ]. IEEE Image Processing, 2000,9:1 522-1 530. 被引量:1
  • 10Portilla J, Strela V, Wainwright M J, et al. Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain [J]. IEEE Trans. Image Processing, 2003,12 ( 11 ): 1 338 - 1 351. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部