摘要
图在曲面上嵌入的分类就是确定图在同一曲面上(不等价的)嵌入的数目.本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式.
The classification of graph embeddings on surfaces is to determine the number of(nonequivalent)embeddings of graph on surfaces.In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in explicit expressions.
出处
《应用数学学报》
CSCD
北大核心
2008年第5期792-798,共7页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10571013)资助项目
科技部"863"项目编号2007AA11Z212-08-01资助
关键词
嵌入
亏格分布
完全亏格分布
联树
关联曲面
embedding
genus distribution
total genus distribution
joint tree
associate surface