期刊文献+

扇图在曲面上嵌入的分类 被引量:5

Classification of Embeddings of Fan Graphs on Surfaces
原文传递
导出
摘要 图在曲面上嵌入的分类就是确定图在同一曲面上(不等价的)嵌入的数目.本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式. The classification of graph embeddings on surfaces is to determine the number of(nonequivalent)embeddings of graph on surfaces.In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in explicit expressions.
作者 杨艳 郝荣霞
出处 《应用数学学报》 CSCD 北大核心 2008年第5期792-798,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571013)资助项目 科技部"863"项目编号2007AA11Z212-08-01资助
关键词 嵌入 亏格分布 完全亏格分布 联树 关联曲面 embedding genus distribution total genus distribution joint tree associate surface
  • 相关文献

参考文献5

二级参考文献43

  • 1Siran, J. and Skoviera, M., Relative embeddings of graphs on closed surfaces, Math. Nachr.,136(1988), 275-284. 被引量:1
  • 2Archdeacon, D., Bonnington, C. P. and Siran, J., A Nebesky-type characterization for relative maximum genus, J. Combin. Theory, B73(1998), 77-98. 被引量:1
  • 3Stahl, S., An upper bound for the average genus of the random graphs, J. Graph Theory,20(1995). 1-18. 被引量:1
  • 4Stahl, S, On the number of maximum genus embeddings of almost graphs, European J. Combin., 13(1992), 119-126. 被引量:1
  • 5Stahl, SI, Permutation partition pairs: a combinatorial generalization of graph embeddings,Trans. Amer. Math. Soc., 259(1980), 129-145. 被引量:1
  • 6Gross, J. L. and Furst, M. L., Hierarcy of imbedding distribution invariants of a graph, J.Graph Theory, 11(1987), 205-220. 被引量:1
  • 7Furst, M. L. Gross, J. L. and Statman, R., Genus distributions for two class of graphs, J.Combin. Theory, B46(1992), 22-36. 被引量:1
  • 8Gross, J. L., Robbins, D. P. and Tucker, T. W., Genus distributions for bouquets of circles, J.Combin. Theory, B47(1989), 292-306. 被引量:1
  • 9Jackson, D. M., Counting cycles in permutations by group characters, with an application to a topological problem, Trans. Amer. Math. Soc., 299(1987), 785-801. 被引量:1
  • 10Rieper, M. and White, A. T., Enumerating 2-cell embedding of connected graphs, Proc. Amer.Math. Soc., 103(1988),321-330. 被引量:1

共引文献20

同被引文献20

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部