期刊文献+

Genus distribution of ladder type and cross type graphs 被引量:1

Genus distribution of ladder type and cross type graphs
原文传递
导出
摘要 In this paper a method is given to calculate the explicit expressions of embedding genus distribution for ladder type graphs and cross type graphs. As an example, we refind the genus distri- bution of the graph Jn which is the first class of graphs studied for genus distribution where its genus depends on n. In this paper a method is given to calculate the explicit expressions of embedding genus distribution for ladder type graphs and cross type graphs. As an example, we refind the genus distribution of the graph J n which is the first class of graphs studied for genus distribution where its genus depends on n.
出处 《Science China Mathematics》 SCIE 2009年第8期1760-1768,共9页 中国科学:数学(英文版)
基金 supported National Natural Science Foundation of China (Grant Nos. 10571013, 60433050) the State Key Development Program of Basic Research of China (Grant No. 2004CB318004)
关键词 EMBEDDING genus distribution joint tree surface GENUS 05C10 05C30 embedding genus distribution joint tree surface genus
  • 相关文献

参考文献2

二级参考文献16

  • 1Gross J L, Furst M.L. Hierarcy of Imbedding Distribution Invariants of a Graph. J. Graph Theory, 1987, 11:205-220. 被引量:1
  • 2McGeoch L A. Algorithms for Two Graph Problems: Computing Maximum-genus Imbeddings and the Two-server Problem. Computer Science Dept., Carnegie Mellon University, PA: Ph.D Thesis, 1987. 被引量:1
  • 3Furst M L, Gross J L, Statman R. Genus Distributions for Two Classes of Graphs. J. Combin. Theory (B), 1989, 46:22-36. 被引量:1
  • 4Tesar E H. Genus Distribution of Ringel Ladders. Discrete Math., 2000, 216:235-252. 被引量:1
  • 5Liu Y P. Advances in Combinatorial Maps. Beijing: Northern Jiaotong University Press, 2003. 被引量:1
  • 6Wan L X, Liu Y P. Orientable ,Embedding Distributions by Genus for Certain Type of Non-planar Graphs (I). Ars Combin., 2006, 79:97-105. 被引量:1
  • 7Wan L X, Liu Y P. On Embedding Genus Distribution of Ladders and Crosses. Applied Mathematics Letters, to appear. 被引量:1
  • 8Liu Y P. Embeddability in Graphs. Dordrecht, Boston, London: Kluwer Academic Publisher, 1995. 被引量:1
  • 9Tesar E H.Genus Distribution of Ringel Ladders[J].Discrete Math,2000,216:235-252. 被引量:1
  • 10Gross J L,Robbins D P,Tucker T W.Genus Distributions for Bouquets of Circles[J].J.Combin.Theory(B),1989,47:292-306. 被引量:1

共引文献8

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部