期刊文献+

中国能源需求预测函数:主成份辅助的协整分析 被引量:9

Predictive Function of Energy Demand in China: Co-integration Analysis Assisted by Principal Components Analysis
下载PDF
导出
摘要 本文运用主成份分析法辅助协整和误差校正模型建立中国能源需求的预测模型,并利用数据进行实证检验,结果表明中国能源价格已经能在一定程度上反映能源供求状况,而且利用产业结构调整降低能耗的方法是可行的。在长期中,人口结构,产业结构,燃料价格、消费水平、矿物燃料、润滑油及有关原料的进出口水平影响着中国的能源需求;在短期中,经济产出和产业结构灵敏度较高,显著影响能源需求。该模型预测效果良好,可以为能源需求的预测与管理提供参考。 This paper uses co-integration analysis and Error-Correction Model(ECM) assisted by principal components analysis to construct predictive function of energy demand in China, and test the function with data, results show that: energy price can reflect the situation of supply and demand of energy, and the method that reduce energy consume by adjust the industrial structure is available. In long term, population structure, industrial structure, consume level, fuel's import and export influent energy demand in China; in short term, the sensitivity of GDP and industrial structure is higher. Predictive effect of the function is so excellent that we can infer it when plan energy strategy.
出处 《数理统计与管理》 CSSCI 北大核心 2008年第6期945-951,共7页 Journal of Applied Statistics and Management
基金 国家自然科学基金(编号:90510010)资助。
关键词 能源需求 协整 产业结构 energy demand, co-integration, industrial structure
  • 相关文献

参考文献7

二级参考文献46

  • 1[1]Sun J W. The decrease in the difference of energy intensities between OECD countries from 1971 to 1998[J]. Energy Policy, 2002,30 (8) : 631~ 635 被引量:1
  • 2[2]Jacco C M Farla, Kornelis Blok. The use of physical indicators for the monitoring of energy intensity de velopments in the Netherlands 1980-1995[J]. Energy, 2000,25(7) :609~638 被引量:1
  • 3[3]Silberglitt Richard, Anders Hove, Peter Shulman.Analysis of US energy scenarios:Meta- scenarios,pathways, and policy implications [J]. Technological Forecasting & Social Change, 2003,70 (4): 297 ~ 315 被引量:1
  • 4[4]Tiwari Piyush. An analysis of sectoral energy intensity in India[J]. Energy Policy,2000,28(l1):771~778 被引量:1
  • 5[5]Haas Reinhard, Lee Schipper. Residential energy demand in OECD -countries and the role of irreversible efficiency improvements [J]. Energy Economics, 1998,20(4) :421~442 被引量:1
  • 6[6]Nicos M Christodoulakis, Sarantis C Kalyvitis, Dimitrios P Lalas, et al. Forecasting energy consumption and energy related CO2 emissions in Greece: An evaluation of the consequences of the Community Sup port Framework Ⅱ and natural gas penetration[J].Energy Economics, 2000,22 (4): 395 ~ 422 被引量:1
  • 7[7]Ediger Volkan S, Huseyin Tatlidil. Forecasting the primary energy demand in Turkey and analysis of cyclic patterns [J]. Energy Conversion and Management, 2002,43(4) :473~487 被引量:1
  • 8[8]Persaud A Jai, Uma Kumar. An eclectic approach in energy forecasting: a case of Natural Resources Canada's (NRCan's) oil and gas outlook[J]. Energy Policy, 2001,29 (4): 303~ 313 被引量:1
  • 9[9]Weber Christoph, Adriaan Perrels. Modelling lifestyle effects on energy demand and related emissions [J]. Energy Policy, 2000,28 (8): 549~ 566 被引量:1
  • 10[10]Harry C,Wilting, Wouter B,Henri C Moll. Trends in Dutch Energy intensities for the period 1969-1988[J]. Energy Policy,1998,23(10) :815~822 被引量:1

共引文献603

同被引文献119

引证文献9

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部