期刊文献+

改进粒子群优化神经网络及其在产品质量建模中的应用 被引量:19

Improved particle swarm optimized back propagation neural network and its application to production quality modeling
原文传递
导出
摘要 针对传统神经网络优化算法易陷入局部最优值的问题,在标准粒子群算法的基础上,对粒子速度与位置更新策略进行改进,提出一种基于改进粒子群优化算法的BP神经网络建模方法.使用sinc函数、波士顿住房数据及某钢厂带钢热镀锌生产的实际数据进行验证.结果表明,与标准的反向传播神经网络和支持向量机相比,基于改进粒子群优化的神经网络模型可以有效提高预测精度. In order to solve the difficulties of tendency to local optima in conditional optimization algorithms for back propagation neural network (BPNN), with improvements in the strategy for updating the particle's velocity and location, this paper proposed a new back propagation neural network modeling method based on improved particle swarm optimization. The data from sinc function, Boston housing problem and the real strip hot-dip galvanizing production in an iron and steel corporation were used for verification. The results show that, compared with the standard BPNN and support vector machine algorithms, the proposed method can effective- ly help the BPNN to get a better regression precision and prediction performance.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2008年第10期1188-1193,共6页 Journal of University of Science and Technology Beijing
基金 北京市自然科学基金资助项目(No.3062012)
关键词 BP神经网络 粒子群优化算法 产品质量模型 带钢热镀锌 BP neural network particle swarm optimization production quality modeling strip hot-dip galvanizing
  • 相关文献

参考文献12

  • 1贺建勋著..系统建模与数学模型[M].福州:福建科学技术出版社,1995:316.
  • 2Irie B, Miyake S. Capability of three-layered perceptions//Proceedings of IEEE International Conference on Neural Networks. San Diego, 1988:641 被引量:1
  • 3王克成,王科俊,余达太.2种改进的神经网络结构学习算法[J].北京科技大学学报,1997,19(5):490-494. 被引量:1
  • 4Rumelhart D E, McClelland J L. Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Cambridge: MIT Press, 1986 被引量:1
  • 5Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of IEEE International Conference on Neural Networks. Australia: IEEE Service Center, 1995:1942 被引量:1
  • 6Angeline P J. Evolutionary optimization versus particle swarm optimization; philosophy and performance differences. Evol Program, 1998, 48(17): 1956 被引量:1
  • 7Shi Y, Eberhart R. Empirical study of particle swarm optimization// Proceeding of Congress on Computational Intelligence. Washington, 1999:1945 被引量:1
  • 8Angeline P. Using selection to improve particle optimization//Proceeding of IJ CNN. Washington, 1999:84 被引量:1
  • 9Suganthan P. Particle swarm optimizer with neighborhood operator// Proceeding of Congress on Evolutionary Computation. Piscataway, 1999:1958 被引量:1
  • 10Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization //Proceeding of the Congress on Evolutionary Computation. Seoul, 2001:101 被引量:1

二级参考文献1

同被引文献144

引证文献19

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部