期刊文献+

一种带备选方案的露天矿生产作业计划优化方法 被引量:1

An Optimization Method of Open-pit-mining Production Planning with Various Alternatives
下载PDF
导出
摘要 针对露天矿生产临时出现变动,导致原最优生产作业计划失效的情况,提出一种能够提供备选方案的优化方法。采用一种新型的群智能优化算法——多元优化算法实现优化,算法的搜索元采用上三角数据结构体存储,利用该结构体实现有用信息的记忆和共享,充分利用寻优过程信息,实现搜索过程记忆,在找到最优解的同时,保留多个次优解。以某露天铁矿为例,通过与其他三种常用的群智能算法的优化结果进行比较,表明多元优化算法在露天矿生产作业计划优化中能够提供备选方案且最优解精度更高。 In view of the optimum plan failures caused by varying environments in open-pit mines, an optimization method of open-pit-mine production planning with various alternatives was proposed. A novel swarm intelligence algorithm,multivariant optimization algorithm, was adopted to optimize the production planning. Stored in an upper triangular data structure which memorized and shared useful information, the search atoms of the algorithm achieved the memory of search process by making full use of optimization search process information so that multiple suboptimal alternatives were retained while finding the optimal solution. Taking an open-pit iron mine as an engineering background, this paper compared the optimization results of this algorithm with those of other three swarm intelligence algorithms. The results indicate that multivariant optimization algorithm can provide various alternatives and that the optimization solution is more accurate in the optimization of open-pit-mining production planning.
出处 《山东科技大学学报(自然科学版)》 CAS 2015年第6期102-106,共5页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61261007)
关键词 露天矿 生产作业计划 多元优化算法 搜索元 过程记忆 open-pit-mining production planning multivariant optimization algorithm search atom process memory
  • 相关文献

参考文献11

二级参考文献49

  • 1李建祥,唐立新,吴会江,无.露天矿短期生产调度建模研究[J].计算机集成制造系统,2005,11(2):195-199. 被引量:4
  • 2孙效玉,宋守志.露天矿卡车优化调度系统实时调度方法[J].金属矿山,2005,34(8):14-17. 被引量:13
  • 3王青,王智静,马沂夫.露天开采整体优化方法[J].金属矿山,1996,25(6):10-13. 被引量:10
  • 4姚再兴,刘海娟.遗传算法在大型露天矿卡车优化调度中的应用[J].露天采矿技术,2007,22(3):44-47. 被引量:5
  • 5Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287. 被引量:1
  • 6Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms[J]. Simulation, 1994, 62(4): 242-254. 被引量:1
  • 7Joines J A, Houck C R. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's[A]. Proceedings of the First IEEE Conference on Evolutionary Computation[C]. Piscataway, N J, USA: IEEE, 1994. 579-584 被引量:1
  • 8Ben Hadj-Alouane A, Bean J C. A genetic algorithm for the multiple-choice integer program[J]. Operations Research, 1997, 45(1): 92-101. 被引量:1
  • 9Rasheed K. An adaptive penalty approach for constrained genetic algorithm optimization[A]. Proceedings of the 3rd Annual Genetic Programming Conference[C]. San Francisco, CA, USA: Morgan Kaufmann, 1998. 584-590. 被引量:1
  • 10Runarsson T P, Yao X. Stochastic ranking for constrained evo lutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294. 被引量:1

共引文献73

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部