期刊文献+

基于粒子群神经网络线控转向故障诊断的研究 被引量:5

Research on fault diagnosis for steer-by-wire system based on particle swarm optimization neural network
下载PDF
导出
摘要 改进的自适应粒子群优化算法根据群体早熟收敛程度和个体适应值来调整惯性权重和阈值系数,以及对粒子速度与位置进行更新,该算法兼顾全局寻优和局部寻优,有效地避免早熟收敛。使用改进的自适应粒子群优化算法训练神经网络,并根据汽车线控转向系统构建故障诊断模型。实验结果表明:与传统的粒子群优化算法、遗传算法训练神经网络相比,基于改进的自适应粒子群优化算法的神经网络能够有效改善神经网络的训练效率,加快了收敛速度,提高故障模式识别的准确率。 A new particle swarm optimization algorithm with dynamically changing the inertial weight and threshold value based on the improved particle swarm optimization is proposed, in which the inertial weight of the particle is adaptively adjusted based on the premature convergence degree of the swarm and the fitness of the particle. The diversity of inertial weight makes a compromise between the global convergence and local convergence, so it can effectively alleviate the problem of premature convergence. The algorithm is applied to train neural network and a model of fault diagnosis for steer-by-wire is established. The simulation results illustrate that compared with particle swarm optimization algorithm and genetic algorithm, the proposed algorithm can effectively improve the training efficiency of neural network, speed up the convergence rate and obtain good diagnosis results.
出处 《传感器与微系统》 CSCD 北大核心 2010年第9期39-41,44,共4页 Transducer and Microsystem Technologies
基金 广西研究生教育创新计划资助项目(2008105940814M03)
关键词 改进的自适应粒子群算法 神经网络 故障诊断 汽车线控转向 improved self-adaptive particle swarm algorithm neural network fault diagnosis steer-by-wire
  • 相关文献

参考文献7

二级参考文献15

  • 1张晓馈,控制理论与应用,1998年,15卷,1期,17页 被引量:1
  • 2周远晖,清华大学学报,1998年,38卷,3期,93页 被引量:1
  • 3Qi Xiaofeng,IEEE Trans Neural Networks,1994年,5卷,1期,120页 被引量:1
  • 4Irie B, Miyake S. Capability of three-layered perceptions//Proceedings of IEEE International Conference on Neural Networks. San Diego, 1988:641 被引量:1
  • 5Rumelhart D E, McClelland J L. Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Cambridge: MIT Press, 1986 被引量:1
  • 6Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of IEEE International Conference on Neural Networks. Australia: IEEE Service Center, 1995:1942 被引量:1
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization; philosophy and performance differences. Evol Program, 1998, 48(17): 1956 被引量:1
  • 8Shi Y, Eberhart R. Empirical study of particle swarm optimization// Proceeding of Congress on Computational Intelligence. Washington, 1999:1945 被引量:1
  • 9Angeline P. Using selection to improve particle optimization//Proceeding of IJ CNN. Washington, 1999:84 被引量:1
  • 10Suganthan P. Particle swarm optimizer with neighborhood operator// Proceeding of Congress on Evolutionary Computation. Piscataway, 1999:1958 被引量:1

共引文献92

同被引文献81

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部