期刊文献+

基于免疫粒子群的K均值聚类算法 被引量:4

Cluster Analysis Based on Particle Swarm Optimization with Immunity
下载PDF
导出
摘要 粒子群算法是一类高效求解连续函数优化的随机搜索算法,在K均值聚类算法中得到广泛应用,但是在群体进化后期容易陷入局部极值,针对算法缺点,提出了一个新的聚类算法——基于免疫过程的粒子群K均值聚类算法,并将此算法与K均值聚类算法和粒子群K均值聚类算法进行比较。理论分析和数据实验证明,该算法有较好的全局收敛性,不仅能有效的克服传统的K均值聚类陷入局部极小值的缺点,而且全局收敛能力优于基于粒子群的K均值聚类算法。 Particle Swarm Optimization (PSO) is an efficient global stochastic search algorithm for continuous function optimization,and is combined broadly in K-Means clustering algorithm. But both K- Means and PSO are getting into local extreme in the anaphase of their evolution. An artificial immunity based PSO algorithm is proposed to overcome this defect and is compared with both K-Means algorithm and PSO based K-Means algorithm. Both theory analysis and experiments indicate that the new algorithm has greater global convergence ability. It overcomes the flaw of getting into local extreme by traditional K-Means effectively,and outperforms the PSO based K-Means algorithm in global convergence ability.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期165-168,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571073)
关键词 K均值 聚类 粒子群 免疫 K-means cluster particle swarm optimization immunity
  • 相关文献

参考文献17

  • 1DUDA R O,HART P E. Pattern classification and scene analysis[M]. New York :John Wiley &. Sons, 1973. 被引量:1
  • 2JAIN A K ,DUBES R C. Algorithms for clustering data[M]. New Jersey :Prentice-Hall, 1988. 被引量:1
  • 3SELIM S Z,ISMAIL M A. K-means type algorithms :a generalized convergence theorem and characterization of local optimality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(1) :81-87. 被引量:1
  • 4KRISHMA K,NARASIMHA M M. Genetic k-means algorithm[J]. IEEE Transactions on System,Man,and Cybernetics :Part B,1999,29(3) :433-439. 被引量:1
  • 5PAL S K,WANG P P. Genetic algorithms for pattern recognition[M]. Boca Raton:CRC Press, 1996. 被引量:1
  • 6BANDYOPADHYAY S,MAULIK U. Genetic clustering for automatic evolution of clusters and application to image classification[J]. Pattern Recognition, 2002,35(6): 1197-1208. 被引量:1
  • 7MAULIK U,BANDYOPADHAY S. Genetic algorithm-based clustering technique[J]. Pattern Recognition, 2000,33 (9):1455-1465. 被引量:1
  • 8傅景广,许刚,王裕国.基于遗传算法的聚类分析[J].计算机工程,2004,30(4):122-124. 被引量:49
  • 9孙志胜,曹爱增,梁永涛.基于遗传算法的聚类分析及其应用[J].济南大学学报(自然科学版),2004,18(2):127-129. 被引量:15
  • 10高尚,杨静宇,吴小俊.聚类问题的蚁群算法[J].计算机工程与应用,2004,40(8):90-91. 被引量:27

二级参考文献33

共引文献205

同被引文献66

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部