摘要
对于给定的线性方程组,在求数值解时常采用Jacobi、Guass-Seidel和SOR迭代法进行求解。给出了在严格对角占优条件下Jacobi、Guass-Seidel和SOR收敛的误差。在三者中Guass-Seidel迭代法的误差上界比Jacobi迭代法和SOR迭代法的误差上界小,因此采用Guass-Seidel迭代法来进行求解严格对角占优阵是一种较好的选择。
Jacobi, Guass-Seidet and SOR iterations for solving large linear system are studied. In this paper, we consider linear system, where is a strictly diagonally dominant matrix. We prove the Jacobi, Guass-Seidel and SOR iterative method' s error estimate. Finally, Guass-Seidel iterations for solving large linear system are chosen for advantage results in this paper.
出处
《武汉理工大学学报》
EI
CAS
CSCD
北大核心
2008年第9期177-180,共4页
Journal of Wuhan University of Technology
关键词
线性方程组
严格对角占优矩阵
迭代法
误差
linear system
strictly diagonally dominant matrix
iterative method
error estimate