摘要
A.Hadjidimos提出了一个迭代求解线性方程组的AOR方法(AcceleratedOverrelaxationMethod),并讨论了Jacobi迭代矩阵的特征值为实数时此方法的收敛性.在此基础上,讨论了系数矩阵A为(1,1)相容次序矩阵、Jacobi迭代矩阵的特征值为复数时AOR迭代法的收敛情况,给出一个判定收敛的条件,扩充了A.Hadjidimos的结果,并以一个数值例子加以说明.
A. Hadjidimos has proposed the accelerated over relaxation(AOR) iterative method for solving the linear systems and discussed the convergence of this method when the eigenvalues of Jacobi iterative matrix are real numbers.In this paper,the convergence of AOR iterative was discussed when the coefficient matrix of linear system is a (1,1) consistently ordered matrix and the eigenvalues of Jacobi iterative matrix are complex numbers.Then a convergence condition,which generalizes the results of A. Hadjidimos was obtained and a numerical example was given.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2005年第2期169-172,共4页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10071048)