摘要
针对线性方程组的系数矩阵为α-严格对角占优矩阵和双严格对角占优矩阵的情况,讨论了线性方程组求解时常用的几种迭代方法的收敛性,给出了迭代法收敛性定理,解决了以往估计迭代矩阵谱半径的问题。结果不仅适用于这两类矩阵,还适用于广义严格对角占优矩阵类,最后举例说明了所给结果的优越性。
Some iteration methods for solving linear system were studied,when coefficient matrix isα--diagonal strictly dominance or doubly diagonal strictly dominance,and some convergence theorems were given.Results obtained were applicable toα-diagonal strictly dominance matrix or doubly diagonal strictly dominance matrix,and improved the known results and were suited to extended matrices.Finally,an numerical examples were given for illustrating advantage of results.
出处
《辽宁石油化工大学学报》
CAS
2010年第1期81-83,95,共4页
Journal of Liaoning Petrochemical University
基金
辽宁省教育厅高校科研项目(2004F100)
辽宁石油化工大学重点学科建设资助项目(K200409)
关键词
α-严格对角占优矩阵
双严格对角占优矩阵
迭代法
收敛性
α-diagonal strictly dominance matrix
Doubly diagonal strictly dominance matrix
Iteration method
Convergence theorem