期刊文献+

基于曲率流的四边形主导网格的光顺方法 被引量:7

A Curvature Flow Based Fairing Algorithm of Quad-Dominant Meshes
下载PDF
导出
摘要 网格模型是计算机图形学和数字几何处理中运用最为广泛的三维几何表达方式.四边网格(以四边形为主的网格)由于其符合人们对几何形状变化的自然感知,在表示三维几何上有其独有的优势,并且可以更为直接地应用在几何造型、细分曲面、建筑设计等方面.文中针对四边形主导网格含有噪声的情况,设计了一种基于表面微分属性的光顺方法,该方法具有易实现、计算效率高的特点.基于曲率流的几何扩散可以有效地保持原网格的几何特征,同时还针对四边形主导网格的T-顶点进行了特殊处理. Mesh model is the most extensively used 3D geometry representation in computer graphics and geometry processing. Quadrilateral/quad-dominant mesh has the unique advantage of representing 3D shapes because its structure fits the shape variation well according to human perception. Moreover, quadrilateral mesh can be directly applied to various fields as geometric modeling, subdivision surface and architecture design. This paper presents a differential properties based fairing algorithm on quad-dominant meshes. The method is computationally efficient and very easy to implement. During the fairing process, geometric features on the mesh model can be well preserved because of the geometry diffusion guided by curvature flow. T-junctions in the mesh structure are also under special consideration.
出处 《计算机学报》 EI CSCD 北大核心 2008年第9期1622-1628,共7页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2006CB303106) 国家"八六三"高技术研究发展计划项目基金(2007AA01Z336)资助~~
关键词 网格 四边形 光顺 mesh quad-dominant fairing
  • 相关文献

参考文献23

  • 1Field D A. Laplacian smoothing and delaunay triangulations. Communications in Applied Numerical Methods, 1988, 4: 709-712 被引量:1
  • 2Taubin G. A signal processing approach to fair surface design//Proceedings of the SIGGRAPH. 1995:351-358 被引量:1
  • 3Desbrun M, Meyer M, Schroder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow// Proceedings of the SIGGRAPH. 1999:317-324 被引量:1
  • 4Liu X G, Bao H J, Peng Q S, Heng P-A, Wong T-S. Constrained fairing for meshes. Computer Graphics Forum, 2001, 20(2) : 115-123 被引量:1
  • 5Liu L G, Tai C-L, Ji Z P, Wang G J. Non-iterative approach for global mesh optimization. Computer-Aided Design, 2007, 39(9): 772-782 被引量:1
  • 6Bajaj C L, Xu G. Anisotropic diffusion of surfaces and functions on surfaces. ACM Transactions on Graphics, 2003, 22 (1)4-32 被引量:1
  • 7Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing//Proceedings of the IEEE Visualization. 2000:397-405 被引量:1
  • 8Hildebrandt K, Polthier K. Anisotropic filtering of non-linear surface features. Computer Graphics Forum, 2004, 23 (3) : 391-400 被引量:1
  • 9Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Transactions on Graphics, 2003, 22(3): 950-953 被引量:1
  • 10Jones T R, Durand F, Desbrun M. Non-iterative, featurepreserving mesh smoothing. ACM Transactions on Graphics, 2003, 22(3): 943-949 被引量:1

同被引文献56

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部