期刊文献+

基于模式挖掘与匹配的移动轨迹预测方法 被引量:7

Method for mobile path prediction based on pattern mining and matching
下载PDF
导出
摘要 分析了移动轨迹预测的已有方案及各方案存在的问题,提出了一种全新的移动设备位置预测方法,即基于模式挖掘与模式匹配的移动用户移动轨迹预测(Mpp)方法。在若干个实际WLAN用户的移动跟踪数据集上对Markov预测器和新预测器的预测精度进行了比较。实验结果表明:该方法能够达到比较理想的预测效果,与二阶Markov预测器的预测效果基本持平。同时,该方法能够实现增量挖掘,预测精度和可靠性有了进一步提高,具有较高的实用价值。 The shortcomings of some existed mobile path prediction schemes are analyzed in this paper. Then a new prediction method based on pattern mining and matching is proposed, which we call MPP method. In this study we compare the performance of the MPP with that of Order-k Markov predictors using a trace of the mobility patterns of 1,200 users on real Wi-Fi wireless network. Results show that using the MPP method we can achieve ideal predicting effect, which is equally good as or a little better than that using Order-2 Markov predictor, which has the best performance among Markov Order-k predictors. Also based on MPP method we can realize incremental mining that further improves the predicting accuracy and the reliability.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第5期1125-1130,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60573128)
关键词 计算机系统结构 移动轨迹预测 模式挖掘 增量挖掘 模式匹配 computer systems organization mobile path prediction pattern mining the Increment of mining pattern matching
  • 相关文献

参考文献8

  • 1Levine David A, Akyildiz Ian F. The shadow cluster concept for resource allocation and call admission in ATM-hased wireless networks[C]// Proceeding of the 1st Annual International Conference on Mobile Computing and Networking, California, United States, 1995. 被引量:1
  • 2Su William, Gerla Mario. Bandwidth allocation strategies for wireless ATM networks using predictive reser- vation[C]//Proceedings of IEEE Globecom98, Sydney, Australia, 1998. 被引量:1
  • 3Bhattaeharya Amiya, Das Sajal K. LeZi-update: an information-theoretic approach to track mobile users in PCS networks[J]. ACM/Kluwer Wireless Networks, 2002,8 (2/3) : 121-135. 被引量:1
  • 4Cleary John G, Teahan W J. Unbounded length contexts for PPM[J]. The Computer Journal, 1997,40(2/ 3) :67-75. 被引量:1
  • 5Jacquet Philippe, Szpankowski Wojciech, Apostol Izydor. An Universal Predictor Based on Pattern Matching, Preliminary Results[M]. Birkhauser, 2000. 被引量:1
  • 6Cheng Christine, Jain Ravi, van den Berg Eric. Location Prediction Algorithms for Mobile Wireless Systems [M]. Florida, USA: CRC Press, 2003. 被引量:1
  • 7Song Li-bo, Kotz David, Jain Ravi, et al. Evaluating location predictors with extensive Wi-Fi mobility data [C]//Proceedings of INFOCOM, Hongkong, 2004. 被引量:1
  • 8何炎祥,陈 伟,孔维强,张 戈.Web数据挖掘中的增量挖掘[J].计算机工程,2002,28(4):67-69. 被引量:8

二级参考文献9

  • 1[1]Agrawal R,Imielinsky T,Swami A.Mining Association Rules Between Sets of Items in Large Databases.In:Proceedings of the 1993ACM SIGMOD Conference,Washington DC.USA.1993-05 被引量:1
  • 2[2]Agrawal R,Srikant R.Fast Algorithms for Mining Generalized Association.VLDB94,Santiago,Chile,1994-09 被引量:1
  • 3[3]World Wide Web Consortium.Httpd-log Files.In:http://lists.w3.org/Archives,1998 被引量:1
  • 4[4]Toivonen H.Sampling Large Databases for Association Rules.In:Proceedings of the 22nd VLDB Mumbai (Bombay),India,1996-09 被引量:1
  • 5[5]Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules.In:Proceedings of the ACM SIGMOD International Conference.1994-05 被引量:1
  • 6[6]Cooley R,Mobasher B,Srivastava J.Web Mining: Information and Pattern Discovery on the World Wide Web.In:Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence(ICTAI97),1997-11 被引量:1
  • 7[7]Masseglia F,Poncelet P,Han E,et al.Web Mining:Pattern Discobery from World Wide Web Transactions.Technical Report TR-96-050,Department of C.S.,University of Minnesota,1996 被引量:1
  • 8[8]Zaiane O,Xin M,Han J.Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs.In:Proceedings on Advances in Digital Libraries Conference (ADL98),Santa Barbara,CA,1998-04 被引量:1
  • 9[9]Lin M Y,Lee S Y.Incremental Update on Sequential Patterns in Large Databases.In:Proceedings of the Tools for Artificial Intelligence Conference (TAI98) ,1998-05 被引量:1

共引文献7

同被引文献70

  • 1徐庆飞,张新,李卫民.二维空间中目标轨迹预测算法研究与分析[J].航空电子技术,2012,43(1):10-14. 被引量:7
  • 2吕锋,张炜玮.4种序列模式挖掘算法的特性研究[J].武汉理工大学学报,2006,28(2):57-60. 被引量:14
  • 3潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 4马国兵,张楠.一种基于神经网络的机动目标轨迹预测方法[J].青岛理工大学学报,2006,27(5):108-111. 被引量:9
  • 5WEI L Y, ZHENG Y, PENG W. Constructing popular mutes from uncertain trajectories [ C]/! Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012:195 -203. 被引量:1
  • 6MARMASSE N, SCHMANDT C. A user-centered location model [ J]. Personal and Ubiquitous Computing, 2002, 6(5) : 318 - 321. 被引量:1
  • 7ASHBROOK D, STARNER T. Using GPS to learn significant loca- tions and predict movement across multiple users [ J]. Personal U- biquitous Computing, 2003, 7(5): 275-286. 被引量:1
  • 8TIESYTE D, JENSEN C S. Similarity-based prediction of travel times for vehicles traveling on known routes [ C]/! Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2005:1 -10. 被引量:1
  • 9ZIEBART B D, MAAS A L, DEY A K, et al. Navigate like a cab- bie: probabilistic reasoning from observed context-aware behavior [ C]//Proceedings of the 10th International Conference on Ubiqui- tous Computing. New York: ACM Press, 2008: 322- 331. 被引量:1
  • 10HORVITZ E, KRUMM J. Some help on the way: opportunistic rou- ting under uncertainty [ C]// Proceedings of the 14th International Conference on Ubiquitous Computing. New York: ACM Press, 2012:371-380. 被引量:1

引证文献7

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部