期刊文献+

基于有效候选集的支持向量机样本选择方法 被引量:4

Sample selection for support vector machines based on effective candidate set
下载PDF
导出
摘要 训练样本选择是支持向量机的一个重要研究课题。但是,目前大部分样本选择方法的一个共同的不足就是,其训练样本的候选集是整个样本空间,因此可能会选择一些对分类效果影响不大的内部样本,或者选择一些可能会降低分类效果的"过边界"样本。提出了两种基于"有效"候选集的样本选择方法。该方法首先通过"挖心"和剔除"过边界"样本来确定训练样本的"有效"候选集,然后在此"有效"候选集上进行训练样本的选择。实验结果表明,该方法在保留"有效"候选样本的同时,也提高了支持向量机分类器的正确识别率。 Sample selection is an important issue for Support Vector Machines(SVMs).But,at present most sample selection methods have a common disadvantage that the candidate set for training sample is the whole sample space,so,it may select the interior samples or "outliers" that have little or even bad effect on the classifying quality.So,two improved methods based on effective candidate set are proposed in the paper.By using these two methods,the effective candidate set is identified through "removing center"and eliminating the"outliners",and then training samples in this effective candidate set are selected.The experimental results show that the methods reserve effective candidate samples undoubtedly,and also improve the performance of the SVM classifiers.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第23期214-216,共3页 Computer Engineering and Applications
关键词 “有效”候选集 挖心 过边界 支持向量机 effective candidate set removing center outliers Support Vector Machines(SVMs)
  • 相关文献

参考文献10

  • 1Vapnik V N.Statistical learning theory[M].New York:Springer-Verlag, 1998. 被引量:1
  • 2Phillips P J.Support vector machines applied to face recognition[C]// Jordan M I,Kearns M J,Solla S A.Advances in Neural Information Processing Systems 1998,11. 被引量:1
  • 3Shin H J,Cho S Z.Invariance of neighborhood relation under input space to feature space mapping [J].Pattern Recognition Letters, 2005.26 : 707-718. 被引量:1
  • 4Wang Ji-gang, Neskovic P,Cooper L N.Training data selection for support vector machines[C]//LNCS 3610,2005 : 554-564. 被引量:1
  • 5Xia Jian-tao,He ming-yi,Wang Yu-ying,et al.A fast training algorithm for support vector machine via boundary sample selection[C]// IEEE Int Conf Neural Networks & Signal Processing,Nanjing,China,2003. 被引量:1
  • 6姜文瀚,周晓飞,杨静宇.子空间样本选择及其支持向量机人脸识别应用[J].计算机工程与应用,2007,43(20):14-17. 被引量:2
  • 7琚旭,王浩,姚宏亮.支持向量机的一个边界样本修剪方法[J].合肥工业大学学报(自然科学版),2006,29(7):830-833. 被引量:3
  • 8史朝辉,王晓丹,杨建勋.一种SVM增量训练淘汰算法[J].计算机工程与应用,2005,41(23):187-189. 被引量:11
  • 9Mangasarian O L,Wolberg W H.Cancer diagnosis via linear programming[J].SIAM News, 1990,23(5) : 1-18. 被引量:1
  • 10Blake C L,Merz C J.UCI repository of machine learning databases[EB/OL]. ( 2004-08-10).http://www.ics.uci.edu/-mlearn/MLRepository.html. 被引量:1

二级参考文献25

  • 1Vapnik N.The Nature of Statistical Learning Theory[M].New York: Springer Press, 2000. 被引量:1
  • 2Ruping S.Incremental Learning with Support Vector Machines[C].In: ICDM ,2001:641 -642. 被引量:1
  • 3Fung G,Mangasarian O L.lncremental Support Vector Machine Classification[R].Madison, Wisconsin, 2001. 被引量:1
  • 4Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. 被引量:1
  • 5Jiang Yuan,Zhou Zhi-Hua.Editing training data for KNN classifiers with neural network ensemble[EB/OL].http://cs.nju.edu.cn/people/zhouzh/zhouzh.files/publication/publication.htm,2005-11-20. 被引量:1
  • 6Chang C-C,Lin C-J.A Library for Support Vector Machines[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,2005-11-20. 被引量:1
  • 7VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 8DudaRO HartPE StorkDG 李宏东 姚天翔译.模式分类(第2版)[M].北京:机械工业出版社,2003.. 被引量:4
  • 9Vapnik V N.The Nature of statistical learning theory[M].New York:Springer,1995. 被引量:1
  • 10Vapnik V N.Estimation of dependence based on empirical data[M].Berlin:Springer-Verlag,1982. 被引量:1

共引文献13

同被引文献54

引证文献4

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部