期刊文献+

基于β因子的支持向量机增量学习算法

The incremental learning algorithm of support vector machine based on β factor
下载PDF
导出
摘要 提出了一种基于β因子历史样本淘汰机制的在线学习算法.对UCI标准数据集中的部分样本集的测试结果表明:该机制有效地淘汰了一些样本,在保持了分类精度和泛化能力的情况下,大大加快了增量学习的训练速度. A new online learning algorithm was proposed in this paper, which was based on the β factor of dis-carding history sample. Several standard benchmark data sets in the UCI were tested through the new online learning algorithm. The results showed that some samples could be discarded effectively through β factor, which leaded to fast incremental learning with no influence on the precision of training and generalization.
出处 《仲恺农业技术学院学报》 2007年第2期31-35,共5页 Journal of Zhongkai Agrotechnical College
关键词 支持向量机 在线学习 增量学习 support vector machine online learning incremental learning
  • 相关文献

参考文献6

  • 1CAUWENBERGHS G,POGGIO T.Incremental and decremental support vector machine learning[C]//DIETTERICH D G,LEEN T K,TRESP V.Advances in Neural Information Processing Systems.Cambridge (Massachusetts):MIT Press,2001:282-290. 被引量:1
  • 2萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 3史朝辉,王晓丹,杨建勋.一种SVM增量训练淘汰算法[J].计算机工程与应用,2005,41(23):187-189. 被引量:11
  • 4PLATT J C.Fast Training of Support Vector Machines Using Sequential Minimal Optimization[C]//SCHO Lkopf B,BURGES C J C,SMOLA A J.Advances in Kernel Methods-Support Vector Learning.Cambridge (Massachusetts):The MIT Press,1999:185-208. 被引量:1
  • 5CHANG C C,LIN C J.LIBSVM:a library for support vector machines[CP/OL].[2006-5-10]http://www.csie.ntu.edu.tw/-cjlin/libsvm. 被引量:1
  • 6BLAKE C L,MERZ C J.UCI repository of machine learning databases[DB/OL].[2006-5-10] http://www.ics.uci.edu/-mlearn/MLRepository.html. 被引量:1

二级参考文献6

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部