期刊文献+

子空间样本选择及其支持向量机人脸识别应用 被引量:2

Subspace sample selection for SVM on face recognition
下载PDF
导出
摘要 训练样本选择是支持向量机应用研究领域的重要课题之一。为此提出了一种类内模式选择新方法。该方法从选择集子空间逼近原类别样本子空间的思想出发,通过迭代,逐一选择那些到已选样本集所在子空间距离最远的样本。在MIT-CBCL人脸识别数据库training-synthetic子库上的同其他方法的比较识别实验中,表明该文方法在选样比率、选样时间以及SVM测试时间等方面均取得了较为明显的优势。 Sample selection is an important topic for SVM.To attack it,a novel intra-class method based on subspace approximation of training class dataset is proposed in this paper.In one class,the subspace of the chosen set is used to approximate that of the original set.An iterative algorithm is employed to realize this process.The furthest sample to the subspace of the chosen set is selected at each step.The comparative experiments on the training-synthetic set of the MIT-CBCL face recognition database show that much lower selection ratio,much less sampling time and much faster test speed has been obtained by this approach combined with linear SVM without a loss of accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第20期14-17,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60472060 No.60632050)
关键词 样本选择 子空间 支持向量机 人脸识别 模式分类 sample selection subspace Support Vector Machine (SVM) face recognition pattern classification
  • 相关文献

参考文献13

  • 1Vapnik V N.The Nature of statistical learning theory[M].New York:Springer,1995. 被引量:1
  • 2Vapnik V N.Estimation of dependence based on empirical data[M].Berlin:Springer-Verlag,1982. 被引量:1
  • 3Platt J.Sequential minimal optimization:a fast algorithm for training support vector machines[C]//Sch(o)lkopf B,Burges C J C,Smola A J.Advances in Kernel Methods -Support Vector Learning.Cambridge,MA:MIT Press,1999:185-208. 被引量:1
  • 4Joachims T.Making large-scale SVM learning practical[C]//Sch(o)lkopf B,Burges C J C,Smola A J.Advances in Kernel MethodsSupport Vector Learning.Cambridge,MA:MIT Press,1999:169-184. 被引量:1
  • 5Keerthi S,Shevade S,Bhattacharyya C,et al.A fast iterative nearest point algorithm for support vector machine classifier design[J].IEEE Transactions on Neural Networks,2000,11 (1):124-136. 被引量:1
  • 6Hyunjung Shin,Sungzoon Cho.Invariance of neighborhood relation under input space to feature space mapping[J].Pattern Recognition Letters,2005,26:707-718. 被引量:1
  • 7Wang Ji-gang,Predrag Neskovic,Cooper L N.training data selection for support vector machines[J].Lecture Notes in Computer Science (LNCS),2005,3610:554-564. 被引量:1
  • 8Almeida M B,Braga A P,Braga J P.Svm-km:speeding svms learning with a priori cluster selection and k-means[C]//Proceedings of the 6th Brazilian Symposium on Neural Networks,2000:162-167. 被引量:1
  • 9Koggalage R,Halgamuge S.Reducing the number of training samples for fast support vector machine classification[J].Neural Information Processing-Letters and Reviews,2004,2 (3):57-65. 被引量:1
  • 10Kim H,Park H.Data reduction in support vector machines by a kernelized ionic interaction model[C]//Proceedings of the 4th SIAM International Conference on Data Mining (SDM'04),Lake Buena Vista,FL,2004:507-511. 被引量:1

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部