期刊文献+

免疫支持向量机方法在液压泵故障诊断中的应用 被引量:10

Application of Hybrid Approach Based on Immune Algorithm and Support Vector Machine for Fault Diagnosis of Hydraulic Pump
下载PDF
导出
摘要 针对在液压泵故障诊断中故障样本难以获得的问题,融合人工免疫系统中的实值否定选择算法和支持向量机算法提出了一种混合的故障诊断方法。在该混合方法中使用算法产生非己集合(故障样本),将其作为算法的输入进行训练,解决了难以获得故障样本的难题。应用小波分析完成液压泵端盖振动信号的消噪及特征提取。最后用柱塞泵脱靴故障样本进行诊断,正确率可达90%,验证了混合诊断方法的有效性。 A hybrid fault diagnosis approach was proposed, combining the RNS ( real -- valued negative selection) algorithm and the support vector machine,because it was very difficult to gain the fault samples in the fault diagnosis process of hydraulic pump. In this method,the RNS algorithm was used to generate the nonself set as the fault samples,which were used as input to SVM algorithm for training purpose. The problem, lacking the fault samples, was solved using this new method. It was accomplished to cancel the interference existing in the measured signals of hydraulic pump and pick up its features using the wavelet analysis method. At last,the hydraulic pump fault samples were tested using the hybrid approach. The classification right rate of this method is 90% ,so it is valid to the fault diagnosis of hydraulic pump.
机构地区 燕山大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第14期1736-1739,1743,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50775198) 河北省教育厅博士基金资助项目(B2004128)
关键词 免疫算法 故障诊断 支持向量机 液压泵 小波分析 immune algorithm fault diagnosis support vector machine (SVM) hydraulic pump wavelet analysis
  • 相关文献

参考文献13

  • 1李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913. 被引量:55
  • 2Shin H J,Eom D H, Kim S S. One Class Support Vector Machines an Application in Machine Fault Detection and Classification[J]. Computer & Industrial Engineering, 2005,48 : 395-408. 被引量:1
  • 3Carneiro J, Stewart J. Self and Nonself Revisited Lessons from Modeling the Immune Network[C]// Third European Conference on Artificial Life. Granada, Spain : Springer-Verlag, 19 9 5. 被引量:1
  • 4Forrest S,Perelson A, Allen L, et al. Self--nonself Discrimination in a Computer [C]//Proceedings IEEE Symposium on Research in Security and Privacy. Los Alamitos : IEEE Computer Society Press, 1994:202-212. 被引量:1
  • 5Gonzalez F,Dasgupta D, Kozma R. Combining Negative Selection and Classification Techniques for Anomaly Detection [C]//Proceedings of the 2002 Congress on Evolutionary Computation CEC2002. Hawaii, USA : IEEE Press. 2002 : 705-710. 被引量:1
  • 6Dasgupta D, Krishna K K,Wong D. Negative Selection Algorithm for Aircraft Fault Detection[C]// Berlin: Sprlnger-- Verlag, 2004 : 1-13. 被引量:1
  • 7Dasgupta D,Forrest S. Artificial Immune System in Industrial Applications[C]//Proc. 2nd International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu, 1999:257-267. 被引量:1
  • 8Fabio A. Gonzalez, Dasgupta D. Anomaly Detection Using Real--valued Negative Selection[J]. Genetic Programming and Evolvable Machines, 2003,4 (4):383-403. 被引量:1
  • 9李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:81
  • 10何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版),2005,36(1):97-101. 被引量:46

二级参考文献40

  • 1周晓凯,严普强.用小波分析铁路车辆滚动轴承诊断方法[J].清华大学学报(自然科学版),1996,36(8):29-33. 被引量:17
  • 2袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000.. 被引量:16
  • 3Tax D M J, Duin R P W. Support vector domain description [J]. Pattern Recognition Letters, 1999, 20(11-13): 1 191~1 199. 被引量:1
  • 4Xin Dong, Wu Zhaohui, Zhang Wanfeng. Support vector domain description for speaker recognition [A].2001 IEEE Signal Processing Society Workshop.Falmouth, 2001. 被引量:1
  • 5Tax D M J, Duin R P W. Outliers and data descriptions [A]. Seventh Annual Conference of the Advanced School for Computing and Imaging. Delft,2001. 被引量:1
  • 6Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 7Jiang Wanlu,Proc the 3rd Int Symposium on Fluid Power Transmission and Control(ISFP'99),1999年,215页 被引量:1
  • 8Mallat S,IEEE Trans Information Theory,1992年,38卷,2期,617页 被引量:1
  • 9Mallat S,IEEETransonPatternAnalysisandMachineIntelligence,1992年,14卷,7期,710页 被引量:1
  • 10POYHONEN S, NEGREA M, ARKKIO A. Fault Diagnostics of an Electrical Machine with Multiple Support Vector Classifiers[A]. Proceedings of 2002 IEEE International Symposium on Intelligent Control[C]. Vancouver, 2002. 被引量:1

共引文献241

同被引文献113

引证文献10

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部