期刊文献+

基于PCA与蚁群算法的机械故障聚类诊断方法 被引量:6

Clustering Method of Mechanical Fault Diagnosis Based on PCA and Ant Colony Algorithm
下载PDF
导出
摘要 针对现代机械复杂化、智能化的特点,为快速准确地诊断出设备故障,提出了基于PCA与蚁群算法的机械故障聚类诊断新方法。定义了聚类准确率判别因子,对主元的选取进行自适应调整,利用基于高斯径向基核函数的主元分析方法实现了故障特征提取。以蚁群算法解决旅行商问题为原型,定义了城市圈,改进蚁群算法实现了双重寻优,把故障聚类转化为蚁群算法最擅长的寻求最优解问题,将改进的蚁群算法用于故障特征样本的聚类。实例分析证明了该方法的有效性。 A new method of clustering for mechanical fault diagnosis based on PCA and ant colony algorithm was put forward for modern machinary because of the complexity and intelligence. A cluste- ring accuracy discriminati feature extraction was rea was transformed into find ant colony algorithm. The rithm. The improved ant on factor was defined to adjust principle component. The mechanical fault lized based on Gauss RBF kernel function of the PCA. The fault clustering out optimal solution for the model of traveling salesman problem based on city circle was also defined to realize double optimization by ant colony algo- colony algorithm was used for fault features of the sample clustering. The new method is effective by experiments.
机构地区 湖南科技大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3333-3337,3344,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51175169) 湖南省科技计划资助项目(2009FJ4055) 湖南省教育厅重点实验室开放基金资助项目(10K023)
关键词 主元分析 蚁群算法 聚类分析 故障诊断 principle component analysis(PCA) ant colony algorithm cluster analysis fault diag nosis
  • 相关文献

参考文献5

二级参考文献40

共引文献24

同被引文献59

  • 1段吉安,张小栋.基于小波变换的轴心轨迹特征提取[J].振动.测试与诊断,1997,17(1):29-32. 被引量:13
  • 2Yuan Shengfa, Chu Fulei. Fault Diagnosis Based on Support Vector Machines with Parameter Optimisa- tion by Artificial Immunisation Algorithm[J]. Me- chanical Systems and Signal Processing, 2007, 21 (3) : 1318-1330. 被引量:1
  • 3Wang Huaqing, Chen Peng. Intelligent Diagnosis Method for Rolling Element Bearing Faults Using Possibility Theory and Neural Network[J]. Com- puters Industrial Engineering, 2011, 60(4) :511- 518. 被引量:1
  • 4Wang C, Kang Yuan, Shen Pingchen, et al. Appli- cations of Fault Diagnosis in Rotating Machinery by Using Time Series Analysis With Neural Network [J]. Expert Systems with Applications, 2010, 37 (2) : 1696-1702. 被引量:1
  • 5Vapnik V, Chapelle O. Bounds on Error Expecta- tion for Support Vector Machines[J]. Neural Com- putation, 2000, 12(9) 2013-2036. 被引量:1
  • 6Shi X H,Liang Y C, Lee H P, et al. An Improved GA and a Novel PSO-GA Based Hybrid Algorithm[J]. Information Processing Letters, 2005, 93(5): 255-261. 被引量:1
  • 7Shelokar P S, Siarry P, Jayaraman V K, et al. Par- ticle Swarm and Ant Colony Algorithms Hybridized for Improved Continuous Optimization[J]. Applied Mathematics and Computation, 2007, 188(1): 129- 142. 被引量:1
  • 8Xiao Jing, Li Liangping, A Hybrid Ant Colony Op- timization for Continuous Domains[J]. Expert Sys- tems with Applications, 2011, 38 (9): 11072- 11077. 被引量:1
  • 9An Senjian, Liu Wanquan, Venkatesh S. Fast Cross-validation Algorithms for least Squares Sup- port Vector Machine and Kernel Ridge Regression [J]. Pattern Recognition, 2007, 40 (8) : 2154 - 2162. 被引量:1
  • 10Diosan L, Rogozan A, Pecuchet J P. Improving Classification Performance of Support Vector Ma- chine by Genetically Optimising Kernel Shape and Hyper - Parameters [ J ] Applied Intelligence, 2010, 36(2): 280-294. 被引量:1

引证文献6

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部