期刊文献+

集成学习中基于离散化方法的基分类器构造研究 被引量:2

Research on construction of base classifiers based on discretization method for ensemble learning
下载PDF
导出
摘要 为构造集成学习中具有差异性的基分类器,提出基于数据离散化的基分类器构造方法,并用于支持向量机集成。该方法采用粗糙集和布尔推理离散化算法处理训练样本集,能有效删除不相关和冗余的属性,提高基分类器的准确性和差异性。实验结果表明,所提方法能取得比传统集成学习算法Bagging和Adaboost更好的性能。 Construction method of base classifiers based on data discretizaion was proposed to produce individual classifiers with good diversity in ensemble learning. And then it was used in support vector machines ensemble. Using the rough sets and Boolean reasoning algorithm to process the training samples, this method can eliminate the irrelative and redundant attributes to improve the accuracy and diversity of base classifiers. Experimental results show that the presented method can achieve better performance than the traditional ensemble learning methods such as Bagging and Adaboost.
出处 《计算机应用》 CSCD 北大核心 2008年第8期2091-2093,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60772163) 深圳市科技计划项目(SZKJ0708)
关键词 集成学习 基分类器 离散化 支持向量机集成 ensemble learning base classifiers discretization Support Vector Machine (SVM) Ensemble
  • 相关文献

参考文献13

  • 1JI CHUAN-YI, MA SHENG. Combination of weak classifiers[ J]. IEEE Transaction on Neural Networks, 1997, 8(1) : 32 -42. 被引量:1
  • 2DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision tress: Bagging, boosting and randomization[ J ], Machine Learning, 2000, 40(2) : 139 - 158. 被引量:1
  • 3KUNCHEVA L I, WHITAKER C J, SHIPP C A, et al. Is independence good for combining classifiers[ EB/OL]. [ 2007 - 12 -23]. http://ict, ewi. tudelft, nl/-duin/papers/icpr_00_cclass, pdf. 被引量:1
  • 4BREIMAN L, Bagging predictors[ J]. Machine Learning, 1996, 24 (2): 123-140. 被引量:1
  • 5SCHAPIRE R E, The boosting approach to machine learning: An overview[ EB/OL], [21307 - 12 -26]. http://www, ccls, columbia, edu/ compbio/geneclass/non_html_files/Schapire_boosting_review, pdf. 被引量:1
  • 6SKURICHINA M, DUIN R P W. Bagging , boosting and random subspace method for linear classifiers[ J]. Pattern Analysis and Applications, 2002, 5(2) : 121 - 135. 被引量:1
  • 7PARMANTO B, MUNRO P W, DOYLE H R. Improving committee diagnosis with resampling techniques[ C]// Proceedings of Advances in Neural Information Processing Systems. Gambridge, MA: MIT Press, 1996, 8:882 -888. 被引量:1
  • 8DIETrERICH T G, BAKIRI G. Solving multiclass learning problems via error-correcting output codes[ J]. Journal of Artificial Intelligence Research, 1995, 3(2) : 263 -286. 被引量:1
  • 9SHARKEY A J C, SHARKEY N, GERECKE U, et al. The "test and select" approach to ensemble combination[ C]// Proceedings of 1st International Workshop on Multiple Classifier Systems. London: Springer-Verlag, 2000, 1857:30-44. 被引量:1
  • 10NGUYEN H S, SKOWRON A. Quantization of real value attributes: Rough set and boolean reasoning approach[ C]//Proceedings of the 2nd Joint Annual Conference on Information Sciences, Society for Information Processing. Canada: Springer-Verlag, 1995:34 - 37. 被引量:1

同被引文献21

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部