期刊文献+

采用二重扰动机制的支持向量机的集成训练算法 被引量:2

Ensemble algorithms for training support vector machine based on the double disturbance mechanism
下载PDF
导出
摘要 为了有效提升支持向量机的泛化性能,提出两种集成算法对其进行训练.首先分析了扰动输入特征空间和扰动模型参数两种方式对于增大成员分类器之间差异性的作用;然后提出两种基于二重扰动机制的集成训练算法.其共同特点是,同时扰动输入特征空间和模型参数以产生成员分类器,并利用多数投票法对它们进行组合.实验结果表明,因为同时缩减了误差的偏差部分和方差部分,所以两种算法均能显著提升支持向量机的泛化性能. For improving the generalization performance of support vector machine (SVM) effectively, two ensemble algorithms are proposed to train SVM. Firstly, the effectivity of two different disturbance mechanisms on augmenting the diversities among member classifiers, disturbing feature subspace and disturbing model parameters is analyzed. Then, two ensemble algorithms are proposed based on the double disturbance mechanism. The common character of them is that, member classifier is generated by disturbing feature subspace and model parameters, and the finial decision is made by the majority voting procedure. The experimental results show that both algorithms have the ability of improving the generalization performance of SVM significantly because they reduce the bias part and the variance part of the error simultaneously.
出处 《控制与决策》 EI CSCD 北大核心 2008年第7期828-832,共5页 Control and Decision
基金 国家自然科学基金项目(69732010,60272095)
关键词 支持向量机 集成算法 二重扰动机制 成员分类器 Support vector machine Ensemble algorithm Double disturbance mechanism Member classifier
  • 相关文献

参考文献9

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:174
  • 2Kim H, Pang S, Je H, et al. Constructing support vector machine ensemble [J]. Pattern Recognition, 2003, 36(12): 2757-2767. 被引量:1
  • 3Dong Y S, Han K S. A comparison of several ensemble methods for text categorization[C]. IEEE Int Conf on Services Computing. Shanghai, 2004: 419-422. 被引量:1
  • 4Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140. 被引量:1
  • 5Robert B, Ricardo G O, Francis Q. Attribute Bagging: Improving accuracy of classifier ensembles by using random feature subsets[J]. Pattern Recognition, 2003, 36(6): 1291-1302. 被引量:1
  • 6Valentini G, Dietterich T. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods [J]. J of Machine Learning Research, 2004, 5(6): 725-775. 被引量:1
  • 7Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning[C]. Advances in Neural Information Processing Systems. Denver, 1995: 231- 238. 被引量:1
  • 8Tao D C, Tang X O, Wu X. Asymmetric Bagging and random subspace for SVM-based relevance feedback in image retrieval[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2(306, 28(7): 1088-1099. 被引量:1
  • 9Joachims T. Making large-scale SVM learning practical [C]. Advances in Kernel Methods:Support Vector Learning. Cambridge: MIT Press, 1999. 被引量:1

共引文献173

同被引文献24

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2胡中辉 Cai Yunze He Xing Xu Xiaoming.Support vector machine ensemble using rough sets theory[J].High Technology Letters,2006,12(1):58-62. 被引量:1
  • 3谷雨,徐宗本,孙剑,郑锦辉.基于PCA与ICA特征提取的入侵检测集成分类系统[J].计算机研究与发展,2006,43(4):633-638. 被引量:25
  • 4李国正,李丹.集成学习中特征选择技术[J].上海大学学报(自然科学版),2007,13(5):598-604. 被引量:7
  • 5Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning [ C ] //Advances in Neural In- formation Processing Systems, Cambridge MA: MIT Press, 1995:231 -238. 被引量:1
  • 6Robert B, Ricardo G O, Francis Q. Attribute bagging: improving accuracy of classifier ensembles by using random fea- ture subsets [J]. Pattern Recognition, 2003, 36:1291 -1302. 被引量:1
  • 7Valentini G, Dietterich T. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods [ J ]. J of Machine Learning Research, 2004, 5 (6) : 725 - 775. 被引量:1
  • 8Li X C, Wang L, Eric Sung. AdaBoost with SVM based component-classifiers [ J]. Engineering Application of Artificial Intelligence, 2008, 21:785-795. 被引量:1
  • 9Bryll R, Gutierrez-Qsuna R, Quek F. Attribute Bagging: improving accuracy of classifier ensembles by using random fea- ture subsets [ J ]. Pattern Recognition, 2003, 36 : 1291 - 1302. 被引量:1
  • 10USC Viterbi. The USC-SIPI Image Database [EB/OL]. [2012 -08 -01]. http: JJsipi. usc. edu/database/data- base. php. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部