期刊文献+

基于独立分量分析的图像去噪研究 被引量:9

Image Denoising based Independent Component Analysis
下载PDF
导出
摘要 独立分量分析(independent component analysis,ICA)是基于信号高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量。在分析独立分量分析的基本模型及方法的基础上,讨论了有噪声信号的独立分量分析,使用最大似然估计对有噪声的ICA模型进行去噪处理,并研究了基于ICA的软门限图像去噪方法。在仿真实验中与其他的图像去噪方法进行了比较,突出了该方法在噪声方差较小时对非高斯信号的去噪优势。 Independent component analysis(ICA) is a signal analysis method based on signal's high order cumulants,it can find out the latent independent components in data. In this paper,we show how ICA can be used for image denoising. We model the noise-free image data by ICA, and denoise a noisy image by maximum likelihood estimation of the noisy version of the ICA model. This leads to the application of a soft-thresholding operator on the each independent component. Demonstration indicates that the proposed method gives better result compared to Wiener method.
出处 《信号处理》 CSCD 北大核心 2008年第3期381-385,共5页 Journal of Signal Processing
关键词 独立分量分析 图像去噪 最大似然估计 maximum likelihood estimator image denoising ICA
  • 相关文献

参考文献20

  • 1C. Jutten, J. Herauh. Independent component analysis versus PCA. In Proc. European Signal Processing, 287-314,1998. 被引量:1
  • 2J. Karhuren, A. Hyvarlnen, R. Vigario, et al. Applications of neural blind separation to signal and image processing. In Proceeding of the IEEE 1997 International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, to a paper. 53,1997. 被引量:1
  • 3J-F. Cardoso, B. H. Laheld. Equivariant adaptive sourse separation. IEEE Transactions on Signal Processing, 44 (12) : 3017-3030,1996. 被引量:1
  • 4J. V. Stone, J. Porrill, N. R. Porter, et al. Spatiotemporal ICA of fMRI Data. In Computational Neuroscience Report 202, IEEE International workshop on Biologically Motiviated Vision ,2000. 被引量:1
  • 5K. Torkkola. Blind separation for audio signals are there yet? In Proc. Int. Workshop on Independet Component Analysis and Signal Separation ( ICA' 99 ), Aussois, France, 39-244,1999. 被引量:1
  • 6A. J. Bell, T. J. Sejnowski. The independent components of natural scenes are edge filters. Vision Research, 37 (23) : 3327-3338,1997. 被引量:1
  • 7P. C. Yuen, J. H. Lai. Face representation using independent component analysis. Pattern Recognition, 34 ( 3 ) : 545- 553,2001. 被引量:1
  • 8刘进,厉树忠,张媛.基于混合中值滤波的图像去噪处理[J].甘肃科技,2006,22(9):41-43. 被引量:15
  • 9X. Huang, G. A. Woolsey. Image denoising using Wiener filtering and wavelet thresholding. IEEE International Conference on Multimedia and Expo,3 :1759-1762 ,2000. 被引量:1
  • 10L. David, Donoho, M. Iain ,Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90(432) : 1200-1224,December 1995. 被引量:1

二级参考文献41

  • 1[1]S.G.Mallat,A theory for multiresolution signal decomposition: The wavelet representation.IEEE Trans.on PAMI,1989,PAMI-11(7),674-693. 被引量:1
  • 2[2]S.Miallat,Sifen Zhong,Characterization of signals from multiscale edges,IEEE Trans.on PAMII.1992.PAMI-14(7),710-732. 被引量:1
  • 3[3]Yansun Xu,B.Weaver,D.M.Healy,Wavelet transform domain filters: A spatially selective noise filtration technique,IEEE Trans.on IP,1994,IP-3(6),747-758. 被引量:1
  • 4[4]D.L.Donoho,De-noising by soft-thresholding,IEEE Trans.on IT,1995,IT-41(3),613 627. 被引量:1
  • 5[5]S.Mlallat,Wen Liang Hwang,Singularity detection and processing with wvavelets,IEEE Trans.on IT,1992,IT-38(2),617-643. 被引量:1
  • 6[6]MI.R.Banham,A.K.Katsaggelos,Spatially adaptive wavelet-based multiscale image restoration,IEEE Trans.on IP,1996,IP-5(4),619-634. 被引量:1
  • 7[7]N.WVeyrich,G.T.WVarhola,Wavelet shrinkage and generalized cross validation for image denoising,IEEE Trans.on IP,1998,IP-7(1),82-90. 被引量:1
  • 8[8]I.Pitas,A.N.Venetsanoponlos,Nonlinear Digital Filters Principles and Application.Kluwer Acadenfic Publishers,1990. 被引量:1
  • 9Comon P. Independent component analysis, A new concept.? [ J ].Signal Processing, 1994,36 ( 3 ) :287 ~ 314. 被引量:1
  • 10Paraschiv-Ionescu A, Jutten C. Source separation in strong noisy mixtures: a study of wavelet de-noising pre-processing [ A ]. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ASSP) [C], Orlando, Florida, USA. 2002,2:1681 ~ 1684. 被引量:1

共引文献89

同被引文献109

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部