期刊文献+

基于层结构的Contourlet多阈值图像去噪算法 被引量:10

Algorithm of Contourlet Multi-threshold Image Denosing Based on Layer Structure
下载PDF
导出
摘要 研究了多尺度几何分析工具Contourlet,提出了一种基于层结构的Contourlet多阈值去噪算法。该算法将硬阈值算法与基于子带相关的图像去噪方法相结合,根据Contourlet变换后各层分解的系数数目及噪声强度设定阈值,并利用硬阈值函数实现图像去噪。使用该算法去噪后的图像在主观视觉效果和客观质量等方面较小波算法有显著提高。 This paper researches the multiscale geometry analysis tool Contourlet, and proposes a new Contourlet multi-threshold shrink method for image denoising. The algorithm combines hard-threshold with correlation among the suhhand layers of Contourlet transform. Thresholding is derived by both the numbers of coefficients in each transformed layer and the intensity of noises added to the original image, hard-threshold function is also adopted for image denoising. Comparing with traditional wavelet denoising methods, the algorithm achieves obvious improvement in both subjective visual effect and objective quality.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第20期180-182,共3页 Computer Engineering
基金 国家自然科学基金资助项目(69975015) 教育部优秀青年教师资助计划基金资助项目
关键词 多尺度几何分析 CONTOURLET 小波变换 Multi-scale geometric analysis Contourlet Wavelet transform
  • 相关文献

参考文献7

  • 1Do M N,Contourlets V M.Beyond Wavelets[M].Academic Press,2002. 被引量:1
  • 2Burt P J,Adelson E H.The Laplacian Pyramid as a Compact Image Code[J].IEEE Trans.on Commun.,1983,31(4):532-540. 被引量:1
  • 3Donoho D.Denoising by Soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627. 被引量:1
  • 4Sendur L,Selesnick I W.Bivariate Shrinkage Functions for Wavelet-based Denoising Exploiting Interscale Dependency[J].IEEE Transactions on Signal Processing,2002,50(11):2744-2756. 被引量:1
  • 5Chang S G,Yu B,Vetterli M.Adaptive Wavelet Thresholding for Image Denoising and Compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546. 被引量:1
  • 6查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 7Chen G Y,Bui T D.Multiwavelet Denoising Using Neighboring Coefficients[J].IEEE Signal Processing Letters,2003,10(7):211-214. 被引量:1

二级参考文献5

  • 1Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41:613 ~ 627. 被引量:1
  • 2Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[ J]. Biometrika, 1994,81: 425 ~ 455. 被引量:1
  • 3Chang S G, Yu B, Martin V. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000,9 ( 9 ): 1532 ~ 1546. 被引量:1
  • 4Stein C M. Estimation of the mean of a multivariate normal distribution[ J]. Annual Statistical, 1981,9(6): 1135 ~ 1151. 被引量:1
  • 5Yang Dali, Xu Mingxing, Wu Wenhu, et al. A noise cancerlation method based on wavelet transform [ A ]. In: International Symposium on Chinese Spoken Language rocessing [ C ], Beijing, 2000: 211 ~214. 被引量:1

共引文献49

同被引文献121

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部