期刊文献+

基于稀疏码收缩的图像去噪 被引量:4

Image denoising by Sparse Code Shrinkage
下载PDF
导出
摘要 数据的描述方法对提取数据特征至关重要,通常这种描述方法是基于数据的线性变换。传统的的傅立叶变换、离散余弦变换、主分量分析等线性变换方法都是基于全局变换的思想,无法反映图像在时频域的局部特征。独立分量分析是一种多维数据线性变换的方法,它从数据间的高阶统计特性出发,提取的图像数据特征基函数在空间频域中体现了方向性和局部性,能很好的自适应图像数据,并且其所得系数具有稀疏分布的特性。用它对无噪声图像数据进行学习,利用得到的稀疏码变换矩阵对噪声图像数据进行稀疏码变换,得到稀疏成分,并结合最大似然估计得到的软门限算子对该稀疏成分进行收缩,从而达到了去除图像噪声的目的。试验表明该方法在去噪效果和保存图像细节方面明显优于传统的维纳滤波方法。 Data representations are important for extracting data features,usually the representations are based on the linear transformation of the data. Traditional linear transformations, such as Fourier Transformation, Discret Cosin Transformation and Principal Component Analysis etc, are all based on the entire idea, they can not reflect some local features of image in the field of time and frequency. Independent Component Analysis (ICA) is a multi-dimention data transformation method. Rased on the high-order statistics of data,the feature basis function which is obtained by ICA from image data are localized in space as well as in frequency and orientation ,fit image data well. Besides, the obtained components have a sparse distribution. So first, ICA is used to estimate the sparse code transformation from noise-free image data. Then ,this transformation is used to transform the noisy image data into sparse components. Finally, the soft threshold which is got by Maximum Likelihood Estimation is used to shrinkage the sparse components to achieve denoising. The results show that this method have a better effect in denoising and protecting image details,compared to the traditional method of Wiener filter.
作者 石林锁 成浩
出处 《信号处理》 CSCD 北大核心 2007年第5期742-746,共5页 Journal of Signal Processing
关键词 稀疏码收缩 独立分量分析 软门限 图像去噪 Sparse Code Shrinkage Independent Component Analysis(ICA) Soft Threshold Image-denoising
  • 相关文献

参考文献13

  • 1A. J. Bell and T. J. Sejnocoski. The ‘independent component' of natural scenes are edge filters [J]. Vision Research ,37:3327-3338,1997. 被引量:1
  • 2P. Common. Independent component analysis-a new concept? [J]. Signal Processing,36:287-314,1994. 被引量:1
  • 3A Hyvanrinen,E Oja. Independent component analysis:algorithm and application [J]. Neural Network, 13: 411- 430,2000. 被引量:1
  • 4Aapo Hyvarinen, Juha karhunen, Erkki Oja. Independent Component Analysis [M]. Finland: A Wiley-Interscience Publication, 2001. 被引量:1
  • 5Aapo Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis [J]. IEEE Transactions on neural networks, 10(3):626-634,1999. 被引量:1
  • 6Yong M. P, Yamane S. Sparse Population Coding of Faces in the Inferotemporal Cortex [J]. Science, 256 : 1, pp1327- 1330,1992. 被引量:1
  • 7Aapo Hyvarinen. Sparse Code shrinkage : Denoising of non-gaussian data by maximum likelihood estimation. Technical Report A51, Helsinki University of Technology, Lbaoratory of computer and information science, 1998. 被引量:1
  • 8Aapo Hyvarinen. Independent Component Analysis in the presence of gaussian noise by maximizing joint likelihood [J]. Neurocomputiing,22:49-67,1998. 被引量:1
  • 9陈桂明等编著..应用MATLAB语言处理数字信号与数字图像[M].北京:科学出版社,2000:366.
  • 10[美]Rafael C.Gonzalez Richard E.Woods著阮秋琦,阮字智等译.数字图象处理(第二版)[M].北京:电子工业出版社,2003. 被引量:1

同被引文献83

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部