期刊文献+

一类具耗散项的非线性四阶波动方程解的爆破 被引量:9

Blow up of the solution for some nonlinear fourth-order wave equation with dissipative term
原文传递
导出
摘要 作者讨论了一类具耗散项的非线性四阶波动方程utt+Δ2u+u+δut=|u|p-1u初边值问题的爆破性质.依据势井理论,通过构造修正的不稳定集,作者给出了解爆破的一个充分必要条件. The blow up property of initial-boundary value problem of a kind of nonlinear fourth order wave equation utt+△^2u+u+δut=|u|^p-1u is studied. According to potential well theory, by constructing modilied unstable set, the necessary and sufficient condition of blow up is given out.
作者 陈勇明 杨晗
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期459-462,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10301026) 成都信息工程学院科研基金(CRF200702)
关键词 波动方程 初边值问题 不稳定集 爆破 wave equation, initial-boundary value problem, unstable set, blow up
  • 相关文献

参考文献13

  • 1Levandosky P S. Decay estimates for fourth order wave equations[J].J Diff Equat, 1998, 143:360. 被引量:1
  • 2Levandosky S. Stability and instability of fourth-order solitary waves [ J ]. J Dynam Differ Equat, 1998, 10 (1) : 151. 被引量:1
  • 3陈勇明,谢海英,杨晗.一类非线性四阶波动方程整体弱解的光滑性[J].西南交通大学学报,2004,39(6):758-760. 被引量:5
  • 4陈勇明,杨晗.一类非线性四阶波动方程解的爆破[J].西南师范大学学报(自然科学版),2004,29(4):545-548. 被引量:13
  • 5Sattinger D H. On global solution of nonlinear hyperbolic equations[J]. Arch Rat Mech Anal, 1968, 30: 148. 被引量:1
  • 6Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations [J]. Israel J Math, 1975(22) : 273. 被引量:1
  • 7Ikehata Ryo, Suzuki Takashi. Stable and unstable sets for evolution equations of parabolic and hyperbolic type [J]. Hiroshima Math J, 1996, 26: 475. 被引量:1
  • 8Ikehata Ryo. Some remarks on the wave equations with nonlinear damping and source terms [ J ]. Nonlinear Analysis, TMA, 1996, 22(10): 1165. 被引量:1
  • 9Adams R A. Sobolev space[M]. New York/San Francisco/London: Academic Press, 1975. 被引量:1
  • 10Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math Japan, 1972, 17 : 173. 被引量:1

二级参考文献17

  • 1Steven Paul Levandosky. Decay Estimates for Fourth Order Wave Equations [J]. Journal of Differential Equations, 1998, 143: 360-413. 被引量:1
  • 2Steven Levandosky. Stability and Instability of Fourth-Order Solitary Waves [J]. Journal of Dynamics and Differential Equations, 1998,10(1): 151 - 188. 被引量:1
  • 3Sattinger D H. On Global Solution of Nonlinear Hyperbolic Equations [J]. Arch Rat Mech Anal, 1968, 30:148 - 172. 被引量:1
  • 4Payne L E, Sattinger D H. Saddle Points and Instability of Nonlinear Hyperbolic Equations [J]. IsRael Journal of Mathematics, 1975,(22): 273 - 303. 被引量:1
  • 5Woinowsky KS. The effect of axial force on the vibration ofhinged bars[J]. J. Appl. Mech., 1960, 17: 35-36. 被引量:2
  • 6An L J, Peirce A. A weakly nonlinear analysis of elaseto-plastic microstructure models [ J ]. SIAM J. App. Math., 1995,55:136-155. 被引量:2
  • 7Steven P L. Decay estimates for fourth order wave equations[ J]. Journal of Differential Equations, 1998, 143: 360-413. 被引量:2
  • 8Steven P L. Stability and instability of fourth-order solitary waves [ J ]. Jottmal of Dynamics and Differential Equations, 1998,10(1): 151-188. 被引量:2
  • 9Sattinger D H. On global solution of nonlinear hyperbolic equations[J]. Arch. Rat. Mech. Anal. ,1968, 30: 148-172. 被引量:1
  • 10Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations [ J ]. Israel Journal of Mathematics,1975, (22): 273-303. 被引量:1

共引文献22

同被引文献54

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部