期刊文献+

一类非线性四阶波动方程解的爆破 被引量:13

Blow up of Solutions for a Kind of Nonlinear Fourth-order Wave Equations
下载PDF
导出
摘要 讨论了一类非线性四阶波动方程utt+Δ2u+u=up-1u的初边值问题的爆破性质.依据势井理论,通过构造不稳定集,结合凸性分析方法证明了:初值属于不稳定集,初始能量为正但有适当上界时解将发生爆破. Blow-up property of the solution for the initial-boundary value problem for a kind of fourth-order wave equations is considered. According to the potential well theory, the unstable set is constructed. By using the property of the unstable set and the convexity method, it is proved that the solution will blow up in finite time when the initial value stays in the unstable set and the positive initial energy is appropriately small.
作者 陈勇明 杨晗
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期545-548,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10301026) 重庆交通学院科研基金资助项目.
关键词 非线性四阶波动方程 初边值问题 不稳定集 凸性分析方法 爆破 nonlinear fourth-order wave equations initial-boundary value problem unstable set convexity method blow up
  • 相关文献

参考文献5

  • 1Steven Paul Levandosky. Decay Estimates for Fourth Order Wave Equations [J]. Journal of Differential Equations, 1998, 143: 360-413. 被引量:1
  • 2Steven Levandosky. Stability and Instability of Fourth-Order Solitary Waves [J]. Journal of Dynamics and Differential Equations, 1998,10(1): 151 - 188. 被引量:1
  • 3Sattinger D H. On Global Solution of Nonlinear Hyperbolic Equations [J]. Arch Rat Mech Anal, 1968, 30:148 - 172. 被引量:1
  • 4Payne L E, Sattinger D H. Saddle Points and Instability of Nonlinear Hyperbolic Equations [J]. IsRael Journal of Mathematics, 1975,(22): 273 - 303. 被引量:1
  • 5张宏伟,呼青英.一类耦合非线性Klein-Gordon方程组解的稳定集和不稳定集[J].纯粹数学与应用数学,2002,18(3):207-210. 被引量:12

二级参考文献6

  • 1Segal L. Nonlinear partial differential equations in quantum field theory[J]. Proc. Symp. Appl. Math.A. M.S. 1965,17:210~226. 被引量:1
  • 2Jorgens K. Nonlinear Wave Equations [M]. University of Colorado, Department of Mathematics,1970. 被引量:1
  • 3Makhankov V. Dynamics of classical solutions in integrable systems [J]. Physics Reports, Sect C,1978,35:1~128. 被引量:1
  • 4Miranda M Milla Medeiros L A. On the existence of global solutions of a coupled nonlinear KleinGordon Equations [J]. Funkc. Ekvac. 1987,30:147~161. 被引量:1
  • 5Sattinger D H. On global solutions of nonlinear hyperbolic equaions [J]. Arch. Rational Mech. Anal.1968,30:148~172. 被引量:1
  • 6Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math. Japon.1972,17:173~193. 被引量:1

共引文献11

同被引文献93

引证文献13

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部