期刊文献+

p-子群皆p-拟正规或自正规的有限群 被引量:2

FINITE GROUPS WHOSE p SUBGROUPS ARE EITHER p OUASI NORMAL OR SELFNORMAL
下载PDF
导出
摘要 本文首先证明了p-子群皆p-拟正规或自正规的有限群的分类定理.由此,得到了每个子群皆S-拟正规或自正规的有限群的分类定理. This paper proves the following theorem: For finite group G, the following three statements are equivalent: (1) for each prime p∈π(G), every p subgroup of G is p quasi normal or self normal in G;(2) for each prime p∈π(G), ever Sylow p subgroup of G and all its maximal subgroups are p quasi normal or selfnormal in G; (3) G is one of the following two classes of groups: Ⅰ. nilpotent groups; Ⅱ. G=QH, in which, Q=〈x〉∈Syl q(G), H is the normal abelian q com plement of G, and 〈x q〉=O q(G)=Z(G), x  induces a fixed point free automorphism of H by conjugating. From this theroem, we obtain the classification theorem of the finite groups with only S quasi normal or self normal subgroups. The main theorems in the papers of Frattahi (1974) and Zhang Wang (1995) can be obtained by our results.
作者 王坤仁
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1997年第6期17-21,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 拟正规子群 自正规子群 p子群 有限群  (S )quasi normal subgroup, Selfnormal subgroup, Fixed point free power automorphism
  • 相关文献

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部