摘要
本文证明了如下的定理:对于有限群G,下二命题等价:(1)p∈π(G),G的Sylowp-子群及其极大子群皆p-拟正规或自正规;(2)G为下二型群之一:Ⅰ.幂零群;Ⅱ.G=QH,其中H是G的幂零的正规q-补,Q=〈x〉Sylq(G),〈xq〉=Oq(G)=Z(G),x按共轭作用诱导出H的一个无不动点的自同构.由此定理,得到了每个子群皆S-拟正规或自正规的有限群的分类定理。
This paper proves the following theorem: for a finite group G, the following two statements are equiualent:(1) for each prime divisor p of |G|, every Sylow p subgroup of G and all its maximal subgroups are p quasi normal or self normal in G; (2) G is one of the following two classes of groups:Ⅰ nilpotent groups; Ⅱ G=QH, where H is the nilpotent normal q complement of G,Q=〈x〉∈Syl q(G),〈x q〉=O q(G)=Z(G) and x induces a fixed proint free automorphism of order q on H by conjugating.From this theorem, the classification theorem of the class of finite groups with only S quasi normal or self normal subgroups is obtained. The main theorems in Frathahi’s(1974) and Zhang’s(1975) papers are the consequences of the present results.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1997年第3期23-27,共5页
Journal of Sichuan Normal University(Natural Science)
关键词
p-拟正规子群
自正规子群
不动点
自同构
quasi normal subgroup, S quasi normal subgroup, Self normal subgroup, Fixed point free (power) automorphism