期刊文献+

p-拟正规子群Ⅲ 被引量:3

p QUASI NORMAL SUBGROUPS Ⅲ
下载PDF
导出
摘要 本文证明了如下的定理:对于有限群G,下二命题等价:(1)p∈π(G),G的Sylowp-子群及其极大子群皆p-拟正规或自正规;(2)G为下二型群之一:Ⅰ.幂零群;Ⅱ.G=QH,其中H是G的幂零的正规q-补,Q=〈x〉Sylq(G),〈xq〉=Oq(G)=Z(G),x按共轭作用诱导出H的一个无不动点的自同构.由此定理,得到了每个子群皆S-拟正规或自正规的有限群的分类定理。 This paper proves the following theorem: for a finite group G, the following two statements are equiualent:(1) for each prime divisor p of |G|, every Sylow p subgroup of G and all its maximal subgroups are p quasi normal or self normal in G; (2) G is one of the following two classes of groups:Ⅰ nilpotent groups; Ⅱ G=QH, where H is the nilpotent normal q complement of G,Q=〈x〉∈Syl q(G),〈x q〉=O q(G)=Z(G) and  x induces a fixed proint free automorphism of order q on H by conjugating.From this theorem, the classification theorem of the class of finite groups with only S quasi normal or self normal subgroups is obtained. The main theorems in Frathahi’s(1974) and Zhang’s(1975) papers are the consequences of the present results.
作者 王坤仁
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1997年第3期23-27,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 p-拟正规子群 自正规子群 不动点 自同构  quasi normal subgroup, S quasi normal subgroup, Self normal subgroup, Fixed point free (power) automorphism
  • 相关文献

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部